Quick Reference Guide

uniface

—=
s
s
=
st
—=
—=
st
—=
s
et
=
—
—
—
]
]
=

Quick Reference Guide

UNIFACE V5.2

101075201
Revision 1

21 September 1992
QR

UNIFACE V5.2

UNIFACE V5.2
Quick Reference Guide

Revision 1
© Copyright Uniface B.V., Amsterdam, The Netherlands. ”

Table of

This document contains proprietary information belonging to Unsfsce Contents
B.V. It may not be reproduced without written permission Disclosure of
the contents of this manual to third parties is strictly prohibited. ”

Rights to the contents of this document

Trademarks 1 Proc statements........]
UNIFACE™, PolyServer™ and Umversal Presentatlm I.nznﬁzm- ") . . .

tradesharks of Uniface B.V. This d 1.1 Which Procs in WhiCh tgQers..........cccovcvuirinienerenineisens s 1-32
third party hardware and software products and manuﬁctmu: '- 11,1 Rules for areas of restricted USAGE.............co...vivevirirensisisesseressiiinns 1-32

are all registered trademarks.

Authors 2 Special functions

This document was written by Jim Gabriel and Jim Crew. It was

compiled by Anna Hayward with the invaluable assistance of Leds

Baker. 3 Extracting values from the data...........cccoeeerrereccreneeseennnnnne. 3-1
Publishing equipment 3] Strings

This document was produced with FrameMaker publishi = o= ') o i e i

3.1.1 Extracting values from strings
3.1.2 Rules for string extraction
3.1.3 Converting to strings <
912 - Dateand Hme ..ok R N e s S e
3.2.1 Information about date and me ...

Data General AViiON machines.

Reactions

Your suggestions and comments about this version and the
documentation are highly valued. Send or fax this information ta

Uniface B.V. ;

Technical Publications 3.3 Units of measurement for use in Procs ..

Hogehilweg 16 3:3.1 Codes f i i i

1101 CD Amsterdam Tel. +31(0)20 6976644 - iodesiordate tnd time arthmetic..

The Netherlands Fax. +31(0)20 6912912 332 Examples of how UNIFACE freafs date and fime values..................... 3-6

3.3.3 Limit values
3.34 Normalization of time and date values.. =
3.3.5 Extracting values from date and time data............cceevveveniiiiicniinns 39

i l

Quick Reference Guide (101075201, 21 September 1992) il

UNIFACE V5.2
336 Week numbering
3.37 Converting to a date or time value...
338 Converting to dates ...
3.39 Converting to times .
3.3.10 Converting to a date and time...
3.3.11 Converting to time from a number....

3.4 Numbers

341 Extracting values from numeric data.....
342 Rounding
343 Converting o a number ...

4 Debugging Procs..........

4.1
42

(001501310010 (o i 1n[- AR e S S R)~
©1o10a120 o070 I A A AR s S ST ool o SR
4.2.1

422

423

424

425 clrmess off.

426 clrmess on .

427 done

428 dump.. .
429 (5. gn ol g oo 0], - [P SRR SN ie VR B SAREUNE ST £ .
4.2.10 examine {numben, ex {numberi ..

4211 examine, ex

4212 ex{field_namel.entity_name} ..

42.13 ex number= {value} ..

4214 ex{$function(name)} ...

42.15

4216 ioprint {number jo {number ..

42.17 line {number, | {numben

(101075201, 21 September 1992)

ANnnInm

UNIFACE V5.2

4218

42.19

4220

4221

4222 retunon...

4223 retun off....

4224 show,sh

4225 traceon,fron

4226 trace off, ir off

4227 ftrace 1,irl...

4228 trace0,1r0

4229 step,s......

4230 step {numben,s {number ..

4231 xfrace.

4232 Examining confents of Sregisters............c 4-10

4.3 TrQQEr MNEIMONICS .. imeervninisssismwisimmmis loninsvstiiiio 4-10

5 Naming conventions, reserved words and wildcards........... 5-1

5.1 Naming conventions

5.1.1 External schema, conceptual schema, application, field ..
5.12 Frames on paint tableau
513 Global models
5.2 Reserved words
5.2.1 IDF application dictionary NAMeS...........cuimeninmiiimi,
522 UNIFACE Reporter application dictionary names...
5.3 Wildcards
6 Interface definition.... suviate 6-1
6.1 Data types (UNIFACE)cccvviiinninninnies s 6-1
62" UNIFACE packing COAES s mminmssnmssmissmissimsnsssensss 62
Quick Reference Guide (101075201, 21 September 1992) \

- |
UNIFACE V5.2 ”
6.3 Allowed COMDINGHONS.c.uvviieeiieereeseserees s 64 ”
6.4 Variable length teChNIQUES...............cco..eivececeireeeeesceseessees oo, 65 e
7 SYNIAX CRECKS.......oucceeeeceeeceeese s eeseeeeeeeeeseessennes 7-1 n
RN I = o) 147 (o) 2T | ”
7.1 Entry format examples
7.2 Display/Edit/Prompt ”
7.3 Characters allowed in a field
7.4 Shorthand codes for Field syntax model ”
8 Display format ‘ !
8.1 ”
8.2 o d
8.3
8.4 [d
85
9 Vid@0 AN COION ...t e see e 9-1 !
9.1 VidEO GHIDUIESovvuiiviieiiiiiiieeieee e -1 . l
9.2 Color definition ”
10 Keyboard 1ayouts................ouceeeemmmemnessessssssssesssseesssensseens 10-1 ”
101 BUITWS 2103 oo 102 ”
10.2 Data General FKBA700............c.cooovereeerereeeeeseses oo, 10-3
10.3 DEC VTT00/200.........c0eetmuirirenrinsessiasiesseseessesssossense oo oo, 104 _ﬂ
v (101075201, 21 September 1992) l

s A e S T s L ..,
UNIFACE V5.2

10.4 Hewlett PACKArd HP-HILc...ovuieeeeeenriesee e eeeseesessees oo,

10.5 IBMPC AT B3/BAKEY......evvivriisisiiriinsissieernseeseesossossessessseseoonon.

10.6 IBM AT 101/102 key enhanced

10.7 IBM RS6000 CONSOIEoovvviverirreioeeeereeeeeeeeseeseeseersse e

10.8 - IBM 6150 RT PC CONSOIEoveeveeecercereerereees

TOIY OS2 cicsivvevmimunrasistinmsommmssonsessssmssasssmmssmsessnsmstososson

10.10 SCO-UNIX ... oo

10.17 SCO-XENIX...cvviieriiiiiisirerieeries e

10.12 Siemens 97801.........................

10:13 Stratus v102.........c..cvvevveenann,

10.14 Sun-3................

10.15 SUN-4 SPARC SIAHONocovveieieeeeeeeeeeeeeeeereseee e

10.16 Function key combinations (all keyboards)cocovvvreonnn.. 10-17

10.17 *Super’ key COMDINGHONS.............c.ccovcoireererereeres s seere e 10-18
11 IDF command SWItChes...........cccocommummmemereneeneeeeesesesseesnees 11-1

TIT SWITCNES ..o 11-2

T1.2 SUD-SWICNES........oiviiiic et e oo 11-3
12 ASSIGNMENTS........cceeeeereeeceeee et eeeseeeeeases 12-1

12,1 PHOMHES ..ot 12-1

122 SYNI N sussssmmssmmiminssss fisssesersossrsensenerssnssnonsenmesmmesses . 12-2

12,3 Entity assignments...........ccooeveieeeieiceeicoice e, . 12-3

12.4 Path assignments......................... J12-4

124.1 Path to DBMS or network driver. . 12-4
1242 Path o path

125 WIldeard @ssignments..............oc.ecuvieieeioeeesonneseeseesessiosesnno, 12-5

12.6 UNIFACE system settings and Optionscccoeeeeeeceeereonieron, 12-7
Quick Reference Guide (101075201, 21 September 1992) vii

R E—

UNIFACE V5.2 UNIFACE V5.2
12.7 Extensions used for UNIFACE run time and other files
12.8 PolyServer assignments...........c.cccocvvnveieennnns
12.8.1 Providing login information with Sremote_path.
12.8.2 Assigning entities to network drivers
12.8.3 Hierarchy of assignment files
12.8.4 Kinds of assignment files v
1285 PHONHOS G SCODO . cxsvmrroesissssrsssersaessissssmsmnssorsosssossssesrissaissmss oot 12-17 Chapfer '| ‘ Proc si.a'.em enfs
13
Name addmonths - add the specified number of months to the date.
Synopsis addmonths amount, "date"(, "start_date"}
Return Value The resulting date is stored in $result. The date type returned depends

on the date type given as an argument. Ifit is given as a literal string, it
is always returned as a combined date and time field, with the time part
set to 0. If, however, a central or local registeris used as a parameter, the
date type in $result depends on the type of the central or local register.

Name apexit - exit the application immediately.

apexit

Return Value None.

LRRRRRRRRRRRY

- (101075201, 21 September 1992) Quick Reference Guide (101075201, 21 September 1992) page 1-1

—

UNIFACE V5.2
Name askmess - display a and wait for the user response.
Synopsis askmess{/nobeep} "message" {,"reply_1, ..., reply_n" {terminator_1,
terminator_2}}
or
askmess terminator_1, terminator_2
Return Value $status is set to the value returned by the askmess statement. This is:
0 Is returned in $status for ‘N’ (if no replies given).
2 4 For Y’ or ‘J’ (if no replies given).
reply number If replies are given. The reply entered by the user is
indicated in $status; the first reply as 1, the second
reply as 2, etc.
<0 If the user uses terminator_2 to end reply, instead of
terminator_1.
Name blockdata - define a constant block of text.
Synopsis label :blockdata char
text
char
Return Value None.

(101075201, 21 September 1992) Proc statements

—
=
e
o
=
=
—
=
—
—

UNIFACE V5.2

Name

Synopsis

Return Value

break - unconditionally exit a repeat or while loop.

break

None.

Name

Synopsis

Return Value

call - execute the specified 4GL Proc module.

call entry_name

The $status register is set to the value returned by the called module.
If no value is returned, or there is no return statement in the module, 0
is returned.

Name

Synopsis

Return Value

clear - clear the data (entered by the user) in the external schema or
named entity.

clear{/e "entity "Hsource}

$status is set to 0 if the data was successfully cleared. An error is
returned by the DBMS driver if the driver could not clear the data. The
following common errors can be returned:

-3 Hardware or software error.

-16 Network error.

Quick Reference Guide (101075201, 21 September 1992)

page 1-3

UNIFACE V5.2

Name close - close the database specified, or all databases.

Synopsis close {$path}

Return Value $status is set to 0 if the DBMS or all DBMSs were successfully closed.
An error is returned by the DBMS driver if the driver could not clese &
DBMS. The following common errors can be returned:
-3 Hardware or software error.
-16 Network error.

Name clrmess - clear the message frame of text.

Synopsis clrmess

Return Value None.

Name commit - commit a transaction to the database.

Synopsis commit {dbms | $path}

Return Value $status is set to 0 for a negative value indi the DBMS

driver returned an error code. The following codes are commonly
returned by DBMS drivers:

-3 Hardware or software error.

(101075201, 21 September 1992) Proc statements

MnnmmnmInm

=
—

1l

UNIFACE V5.2

-16 Network error.

Name compare - compare fields of two adjacent occurrences.

Synopsis compare {/next | /previous} (field1{field2,..fieldn}) from “entity"

Return Value The compare statement sets both $status and $result. The following
values may be returned in $status:

0 Success (this can be returned even when there is no next
or previous occurrence).

-1 One or more fields could not be accessed. This can occur
when entity is contained in a field or register, and the field
or register does not contain the correct entity name (or
one that does not exist). In this situation, Sresult is
always 0.

The result of the comparison is stored in $result. The possible values

are:

T Perfect match of all specified fields.

0 Fields do not match. This value is always returned if
$statusis-1.

-1 No previous or next occurrence (error situation).

Name compute - evaluate an expression.

Synopsis

Return Value

{compute} destination{/init} = expression | constant

None.

Quick Reference Guide (101075201, 21 September 1992)

page 1-5

———

UNIFACE V5.2 UNIFACE V5.2
Return Value S$status is set by this stat t:
Name creocc - create an empty occurrence of the specified entity. n Sy
1 If the form is being prototyped.
" 0 Function completed successfully.
Synopsis creocc "entity", sequence_number " -3 Hardware or software error.
. A : -5 If the user is not allowed to modify this occurrence, and
* Hoequence number inlesx Suam 0, an ot message 2004 - No modifications allowed on
ULl = £ thi tity is displ: s
* Ifsequence_number equals 0, an empty occurrence of entify is created. Occurfence oF e en. ity g displayed
using the current sequence number. The new occurrence is inserted -6 Exceptional I/O error on write request.
before the old active occurrence, so the effect is to increase all n -11 Occurrence currently locked.
subsequent occurrence sequence numbers by 1. 16 Network
e Ifseq] ber is greater than the current number of cccurrences SEWOr S Brrat:
plus one of entity, $status is set to -1 and no occurrence is created.
. ' Name display - present the external schema on the screen as read-only
Return Value $status is set by the creocc statement. It can be one of the following (cannot be modified).
two values:
sequence_number Of the created occurrence. “
-1 If an occurrence could not be created. Synopsis display{/menu} {field}
- - Return Value $status is set by this statement:
Name debug - start the interactive debugger.
0 On success.
” -1 If the form specified could not be found, and the message
S - _ 0113 - Form paint is empty; cannot edit,
ynopsis debug “ display, or print is displayed.
-1 If the field does not exist, and message 0114 - Failed
" to start edit on field field is displayed.
Return Value None. -16 If the application is running in batch mode, and the
message 0016 - Terminal input aborted; not
- allowed in batch mode is displayed. Use a test on
$batch to avoid this.
Name delete - delete an occurrence from the database. "
Synopsis delete "
page 1-6 (101075201, 21 September 1992) Proc statements Quick Reference Guide (101075201, 21 September 1992) page 1-7

UNIFACE V5.2 UNIFACE V5.2
= Return Value Sstatus is set to the following values:
Name done - exit from a Proc. ;
4 -1 If the external schema is not being printed when you
” issue the eject statement (that is, $printing is 0),
$status is set and no further action is taken for this
Synopsis done “ statement.
0 Any other situation.
Return Value $status remains unchanged. . '
” Name else - execute statements when the if condition is not satisfied.
Name edit - display the external schema and start the structure editor for user ”
input. Synopsis else {Proc_statement}
" endif
or
. else
Synopsis edit{/menul /nowander} {field} Proc_statements
" endif
Return Value $status is set to the following values: "
0 On success. urn Value None.
-1 Ifthe edit statement is not in an EXECUTE trigger, and
the message 0164 - Edit instruction only
allowed in EXECUTE trigger is displayed. This value
is also returned if there are no prompting fields on the Name end - mark the ending of a Proc.
form (they are all defined as no prompt fields).
-16 If an edit is attempted when in batch mode. Use a test
on $batch to avoid this. Synopsis iy
Name eject - eject a page during printing. Retumn Value $status remains unchanged.
Synopsis eject

111111

page 1-8 (101075201, 21 September 1992) Proc statements Quick Reference Guide (101075201, 21 September 1992) page 1-9

UNIFACE V5.2

Name endif - mark the end of an if/else block.
sYnOpSlS endif

Return Value None.

Name endwhile - mark the end of a while loop.
Synopsis endwhile

Return Value None.

Name entry - label the start of a 4GL Proc module.
Synopsis entry entry_name

Return Value None.

page 1-10

(101075201, 21 September 1992) Proc statements

UNIFACE V5.2

a Name erase - activate entity level DELETE or DELETE UP trigger for all
7 occurrences in the external schema.
” Synopsis erase{/e "entity"}
Return Value Sstatus is set by the erase statement:
” 1 Erase is not allowed (for example, the external schema
was activated with run/query).
” 0 For success.
” -2 Occurrence not found.
- -3 Hardware or software error.
” -5 Update request for an occurrence that cannot be updated.
-6 Exceptional I/O error on write request.
" -11 Occurrence currently locked.
-16 Network error.
" Name exit - immediately exit the current external schema and return to the
! previous or specified external schema.
" m exit {{(expression)} {, "external_schema"}}
Return Value The result of evaluating expression is placed in $status . Ifexpression is
” < omitted, $status defaults to 0.
l Quick Reference Guide (101075201, 21 September 1992) page 1-11

UNIFACE V5.2

Name field_syntax - dynamically set the syntax attributes for a field.

Synopsis field syntax "field", "attribute_1{, ..., attribute_n}"

Return Value None.

Name field_video - set the video attributes of the specified field for the
current occurrence.

Synopsis field_video field, "attribute_1{, ..., attribute_n}"

Return Value

None.

Name

Synopsis

Return Value

file_dump - write the contents of the specified field to the specified Sle.

file_dump{/append} field, " {path)file"

None.

page 1-12

(101075201, 21 September 1992) Proc sictements

RRRRRRRRRRRRRRRRRRRY

UNIFACE V5.2

Name file_load -read the contents of the specified file into the specified field.
Synopsis file_load "{path/file", destination
Return Value $status is set by the file_load statement. Possible error situations
are:
-1 The file cannot be opened.
-3 Exceptional I/O error.
-11 File locked.
-16 Network error.
Name goto - unconditional branch to the specified label.
Synopsis goto label
Return Value None.
Name help - display the specified message in a help box and wait for the user
response.
Synopsis help {/noborder)} help_message {, vertical_pos, horizontal_pos
{, vertical_size, horizontal_size}}
Retumn Value $status is set by the help statement.

Quick Reference Guide (101075201. 21 September 1992)

page 1-13

UNIFACE V5.2

With AACCEPT.

With AQUIT.

If the help file USYS: USYSTXT could not be found.
If the field does not exist.

If the help file contains information from a different
version (message 0019 - Form formname has wromg
version; you must recompile it is displayed) er
cannot be interpreted (the file is not a help file, message
0020 - File formname not recognized as
application or formis displayed).

UNIFACE V5.2

oo -

length - return the number of characters in the specified text field.

length string

Sresult is set to the number of characters in the string.

Name

Synopsis

Return Value

if - start of an if/else block.

if (condition)

Name

Synopsis

Return Value

/init - initialize a field without changing the status of Soccmod,
$formmod or $fieldmod.

field/init = value

lock - lock the occurrence in the database.

lock

$status is set by the lock statement.

1 Is always returned when the form is being prototyped.

0 Is returned when the occurrence cannot be modified (for
example, during a run/query).

-1 Is returned if there is no active occurrence.

-2 Is returned if the occurrence has been removed since it
was retrieved.

-3 Is returned if the hit for the occurrence does not exist.

-5 Is returned when there is no hit for the occurrence and

message 2008 - Occurrence cannot be modified
due to fetch error is displayed.

"5 Is also returned when the occurrence is read-only (cannot

be locked), and message 2004 - No modifications
allowed on occurrence of this entityis

10RRRRRRRRRRRRRRRY

page 1-14

(101075201, 21 September 1992) Proc statements

displayed.

-10 Is returned to indicate the occurrence has been modified
or removed since it was retrieved, and a reload should
be executed.

-11 Is returned if the occurrence is already locked.

Quick Reference Guide (101075201, 21 September 1992) page 1-15

S —

UNIFACE V5.2
Other DBMS driver error codes may be returned in certain
circumstances; refer to the Specific DBMS Information Manual.
Name lookup - find the number of occurrences that match the profile.
Synopsis lookup
Return Value The number of hits that match the profile is returned in $status. fan
error occurs, the following values can be returned:
-3 Exceptional I/O error.
-16 DBMS network error.
Name macro - define a structure editor keystroke macro.
Synopsis macro{/exit} "character_sequence"

Return Value

$status is always set to 0.

page 1-16

(101075201, 21 September 1992) Proc statements

UNIFACE V5.2

message - write the string to the screen.

message{/nobeep} "string"

None.

Return Value

nodebug - end interactive debugging.

nodebug

None.

Retumn Value

numgen - generate a unique number using the specified counter as a base.

numgen "counter" , increment {, "library"}

This statement returns a negative value for failure, the value coming
from the DBMS driver (used to access the counter) in most cases.
$result is set to the new number if the function is successful.

e
—
—
—
—
=
—
—
—
—
—
—
—
—

Quick Reference Guide (101075201, 21 September 1992)

page 1-17

UNIFACE V5.2
Name numset - set the specified counter to a new value.
Synopsis numset "counter”, init_value {, "library"}

Return Value

$status is set to 0 on success, -1 otherwise.

Name

Synopsis

Return Value

open - open a database for access.

open "parameters" , "path"

If the open operation fails for any reason, $status is set to a negative
number. This is usually the driver return code. Possible values include:

0 Function completed successfully.

-3 Hardware or software error.

-4 Open request for table failed (most common error).
-16 Network error.

Name

Synopsis

Return Value

perform - call the specified 3GL function.

perform{/noterm} "function"

$status is set to the value returned by function, or -1 if function could
not be found. Consequently, do not return -1 in a 3GL function, as thisis
indistinguishable from UNIFACE not being able to find function.

page 1-18

(101075201, 21 September 1992) Proc statements

R RRRRRRRRRRRRREEEEE

UNIFACE V5.2

$status may contain garbage if the 3GL function does not return a

value.

Return Vaiue

Name print - activate printing, optionally using a print model.

Synopsls print{/ask} {"printer_model"} {,"print_option"}

Return Value $status is set by the print statement.
0 On success.
-1 Printing is already being performed (Sprintingis 1).
-1 AQUIT was used in the Print Attribute form.
-1 An invalid print_option was used (not one of A, C, F or 8).
-1 UNIFACE could not print.
The name of the print file created is available in $result.

- Name print_break - print the specified break frame.

print_break "frame_name"

$status is set by the print_break statement.

-1
0

When not printing or inside a header or footer.

If the Proc code in the OCCURRENCE BECOMES
ACTIVE trigger for the break frame returns a negative
value.

If the Proc code in the OCCURRENCE BECOMES
ACTIVE trigger returns a positive value.

Quick Reference Guide (101075201, 21 September 1992)

page 1-19

UNIFACE V5.2

Name pulldown - activate or load the specified pulldown menu into the
application pulldown menu area.

Synopsis pulldown{/load} {"menu_bar_name"}

Return Value

$status is set by the pulldown and pulldown/load statements:

-1 If the pulldown menu does not exist.

0 If the OPTION trigger of the selected pulldown mena
item is empty.

Otherwise $status is set to the value returned by the Proc co& m
the OPTION trigger of the selected pulldown menu item.

Name putmess - append text to the message frame.

Synopsis putmess "text"

Return Value None.

Name read - build a hitlist (if it does not exist) and fetch a record from the
hitlist.

Synopsis read{/lock} {{u_where (expressionl)} | {where "expression2"}} ¥\

{order by “field {desc} {,..}"}

Return Value

UNIFACE V5.2

$status is set to the value returned by the DBMS driver. This is 0 for
success, and a negative value for failure. The following values can be
returned:

0 Success.

-2 Occurrence not found.

-3 Hardware or software error.
-16 Network error.

Name refresh - redraw the screen.

Synopsis refresh

Return Value None.

Name release - release the database controls and clear the message frame.
Synopsis release{/eH/modl} {"entity"}

Return Value If entity does not exist, message 0145 - Entity entity not

available is displayed, but $status is not set. If entity does exist, the
usual set of DBMS driver codes are returned. These include:

0 Function completed successfully.
-3 Hardware or software error.
-16 Network error.

MMM

page 1-20

(101075201, 21 September 1992) Proc statements

Quick Reference Guide (101075201, 21 September 1992)

page 1-21

UNIFACE V5.2

Name reload - reread and lock the current occurrence from the database.
Synopsis reload
Return Value If the occurrence exists, the usual set of DBMS driver error codes can be
returned to $status. These include:
0 Function completed successfully.
-2 Occurrence not found.
-3 Hardware or software error.
-11 Occurrence currently locked.
-16 Network error.
Name remocc - mark an occurrence of the specified entity for deletion on the
next store.
Synopsis remocc "entity" , sequence_number
Return Value $status is set by the remocc statement. It can be set to one of the

following two values:
sequence_number Of the removed occurrence.

-1 If the occurrence could not be removed.

page 1-22

(101075201, 21 September 1992) Proc statements

=
—
=
—
=
—
—
—
-—

UNIFACE V5.2

Name repeat - mark the start of a repeat/unt il block.
Synopsis repeat

statement

{statements}

until (expression)

Return Value None.
Name reset - reset the specified Sfunction to 0.
Synopsis reset $function

Return Value

$status is set to -1 if the function cannot be modified by reset. If the
function can be modified by reset, $status is set to the new value of the
function (0). The only modifiable functions are $formmod, $fieldcheck
and Socccheck.

Name

Synopsis

Return Value

retrieve - activate the READ trigger for the first outermost entity and
all related entities, or for a specific entity.

retrieve{{/e ["entity"}}|{/o {("entity"}}} {"wildcard_character"}

$status is set by the retrieve statement. Common values returned
include:

Quick Reference Guide (101075201, 21 September 1992)

page 1-23

UNIFACE V5.2

No data to retrieve.

The occurrence was found in the external schema The
current occurrence is removed and the cursor
repositioned on the found occurrence.

The occurrence was found among the removed
occurrences; it was un-removed.

The entity is painted as a foreign entity and one hit was
found in the database.

The entity is painted as a foreign entity with codingin the
WRITE UP trigger and the key value was not found
during the database lookup. It is assumed that thisis a

Unexpected end of file encountered.

The entity is painted as a foreign entity and the key value
was not found during the database lookup.

Exceptional I/O error.

Open request for the file or table failed.

The key exists in the database and was not found in the
hitlist (duplicate key). This is also returned by
retrieve/o when the entity is painted as a normal down
entity, and multiple hits were found during the database
lookup (ambiguous key).

Occurrence currently locked.

The entity is painted as a normal ‘down’ entity, and
multiple hits were found during the database lookup
(ambiguous key). This is also returned by retrieve/o
when the entity is painted as a foreign entity and
multiple hits were found during the database lookup.

DBMS network error.

(101075201, 21 September 1992) Proc statements

UNIFACE V5.2

return - exit from the Proc module, optionally returning a value.

return { (expression)}

Sstatus is set to the value of expression, if one is given. If no expression
is given, Sstatus is set to 0.

rollback - back out of the transaction (if supported by DBMS).

rollback {dbms} | {$path}

Retumn Value Sstatus is set to the value returned by the DBMS driver. This is 0 for
success, and a negative value for failure. The following values are
returned:
0 Function completed successfully.
-3 Hardware or software error.
-16 Network error.

Name run - activate the specified external schema.

Retumn Vailue

run ({display) | {/query} "schema" {{,vertical_pos, horizontal_pos
{,vertical_size, horizontal_size}}

The run statement sets Sstatus to the value returned by the EXECUTE

Quick Reference Guide (101075201, 21 September 1992) page 1-25

UNIFACE V5.2

trigger (of the run external schema) if it contains a return er exiz
statement. The default (that is, if no return or exit statements swe
present) is one of the following values:

-1 schema could not be found.

0 The schema did not contain an edit or Gisplay
statement in the EXECUTE trigger.

9 The user left schema with AACCEPT.
10 The user left schema with AQUIT.

Name

Synopsis

Return Value

scan - inspect the field or register, returning the starting position of the
text that matches the specified profile.

scan string, "profile"
or
scan string, ‘profile’

The position of the first character of the string is returned in $resuic:
Starting position of the match.

Profile not found.

Source is a null string.

Sresult > 0
Sresult = 0
Sresult = 0

Name

Synopsis

selectdb - calculate the aggregate values for specified fields in the
database.

selectdb ({function (field), ..., function (field)}) from "entity"
fu_where clause} to destinations

where function is one of ave, count, max, min, sum.

page 1-26

(101075201, 21 September 1992) Proc statements

(

IR RRRRRRRRRRRRRRRRREE

Return Value

UNIFACE V5.2

$status is set by the selectdb statement.

>=0 The number of occurrences that matched clause.
-1 If a field does not exist.

-1 Function cannot be used with this type of field.
-3 Hardware or software error.

-16 Network error.

Name

Synopsis

Return Value

set - set the specified $function to 1.

set Sfunction

$status is set to -1 if the function cannot be modified by set. If the
function can be modified by set, $status is set to the new value of the
function (1). The only modifiable functions are $formmod, $ fieldcheck
and Socccheck.

Name

Synopsis

Return Value

setocc - make a specific occurrence the current occurrence.

setocc "entity", sequence_number

$status is set by the set occ statement. One of the following values are
returned:

sequence_number Of the new occurrence.

-1 If the occurrence could not be set to.

-3 No more occurrences to set to.

Quick Reference Guide (101075201, 21 September 1992)

poge 1-27

UNIFACE V5.2

-11 Occurrence currently locked.

-16 Network error.

i

store - activate WRITE, WRITE UP, DELETE or DELETE UP triggers
for all occurrences marked as modified.

§

store{/e {"entity"}}

UNIFACE V5.2

Name skip - line feed the specified number of lines when printing.

Synopsis skip {expression}

Return Value $status is set to -1 if UNIFACE is not printing. $status is set to D en
or if the stat t is ignored.

Name spawn - execute the specified command, using the operating system.

Synopsis spawn "command"

Return Value

Return Value The usual set of DBMS driver error codes can be returned. These include:
s No store performed because no modifications were made
to the data since the last retrieve or store statement.
Function completed successfully.

-3 Hardware or software error.

-4 Open request for the file or table failed.

$status is -1 if a null command (" *) has been given as an argument.
Otherwise, spawn returns either an operating system code or the -5 Update request for an occurrence that cannot be updated.

command return code. -6 Exceptional I/O error on write request.

-7 Duplicate key.
-10 Record modified (perform a reload).
-11 Occurrence currently locked.

Name

Synopsis

Return Value

sql - pass a SQL statement to the specified DBMS. 15 UNIFACE network error.

-16 DBMS network error.

sqgl "statement", "path"

$status is set to the number of hits, Sresult is set to the value of the
first column of the last row (if the statement contains a select). A
negative value indicates a DBMS driver error code. Common values
include:

-3 Hardware or software error, or the DBMS given by path
does not support a DML.

MMM

page 1-28

(101075201, 21 September 1992) Proc statements Quick Reference Guide (101075201, 21 September 1992) page 1-29

UNIFACE V5.2
statement
Name until - mark the end of a repeat/until block. istatement
Synopsis until expression _ _ Siatement}
endwhile
or
while (expression) statement
Return Value None.
Retum Value None.
Name u_where - provide the profile for selection.
Name write - write the current occurrence to the database.
Synopsis u_where (clause)
Synopsis write
Return Value See read or selectdb, as appropriate.
Refumn Value The usual set of DBMS driver error codes can be returned. These include:
Name where - DBMS-specific profile clause for the read statement. 0 Function completed successfully.
-3 Hardware or software error.
-4 Open request for the file or table failed.
Synopsis where “specific_clause” -5 Update request for an occurrence that cannot be updated.
-6 Exceptional I/O error on write request.
-7 Duplicate key.
Return Value See read and $dberror. -10 Record modified (perform a reload).
-11 Occurrence currently locked.
-15 UNIFACE network error.
-16 DBMS network error.
Name while - mark the start of a while/endwhile block.
Synopsis while (expression) a
‘ Quick Reference Guide (101075201, 21 September 1992) page 1-31

page 1-30 (101075201, 21 September 1992) Proc statements

UNIFACE V5.2

1.1 Which Procs in which triggers

In figure 1-1 you see which Procs are allowed in which triggers. The
following symbols are used:

Symbol Meaning

v This trigger is the best place for the statement.

- You should not use the statement in the trigger.

? You can use the statement in the trigger, but there s
usually a better place for it.

- You can use the statement in the trigger, but comect

usage depends heavily on what you want to do with i
caution is recommended.

table 1-1 Meaning of symbols used in figure 1-1.

1.1.1 Rules for areas of restricted usage

Rule 1
Use only when the following condition holds:

¢ Proc operates on occurrence of inner entity.
Rule 2
Use only when one of the following conditions holds:

* Proc operates on occurrence of inner entity.
¢ Proc operates on current occurrence of current entity.

Rule 3

Use only when the following condition holds:

* Proc operates on field in current occurrence of current entity.
Rule 4

Use only when one of the following conditions holds:

¢ Proc operates on field in current occurrence of current entity.
* Proc operates on field in occurrence of inner entity.

page 1-32

(101075201, 21 September 1992) Proc statements

MMM

UNIFACE V5.2

Procs and |ES ES ES O O O Field
their start database general |database | manipulation | database general |
classification equests requests o =
e 5
! 9 1] (3 g 8 E
Q
<8 1828 |85 | 2 (882 |ve8.3 |2
88 885 |»3 | 8 |38s 85880 |8
[BPPL | == |= = =" | = = 3 Bive te . [|iot e b e L
MNUA [- - |- - - - -
UKYA |- - |- - - -
} swiT |- - [- - - |- 2 e
EXEC |/ v/ [* * * [* * - 2% oo o= S IA
ACPT |- - [2 * 2 [- - g A N r Y
aut |- - [- 2 - [- - - R |
RETR |- - |/ - - - A N A ‘
STOR |- - [-v/ - [* * - /* |- e I |
ERAS |- - [? - - - - /7?2? |----- /sy |
CLR [-- |2 -- |/ 7/ - R B T 2
MNUS |- - |- - - |- - - W .. e | LAA
UKYS |- - [2 272 [?72 - ?2?2? [-----l/rvss |
OoBA |- - [- - - [- - - 111 |----- |/ /7 |
MK [= =5 = |=.= v e - |- << 777 }
w |MO |- - [- - - [-- " 111 |[----- |/ /7 |
oo s === |-~ 2 227 |----- |/ /7
Qe [-- [--- [-- - 72 2 |----2 |4 IS
= PTE [- - 227 |- * - 111 |----- [/ /7
HLPE |- - |- - - | - - - cw o e s e w = | LAA
MNUE [- - [- - - |- - - 111 |----- |/ /7
READ |- - |- - - | - - 2 - - - |/---- [3//
WRIT |- - [- - - |- - - < - |~/ --- (877
DELE |- - |- - - |- - - - - - [--7/-- |87/
WoeK |- - [~ - - |- - - - - - - LA | BAA
IWRUP [- - [- - - [- - - - - - |-/ ---T3/7
DLUP |- - |- - - |- - - - - - |--/-- 3877
SMOD [- - |- - - |- - - 111 |----- |[477
LFID |- - |- - - |- - - 111 |----- |[477
NFLD |- - |- - - | - - B 11 [-- - -- |-77
IPAD |- - [- - - [- - 5 71 [-- - -~ - /7
DILF |- - |27 727 |- * = [T1 1 [----- 477
HLPF |- - |- - = ¢ = [T71 1 [----- |477
MNUF |- - |- - - |- - 5 T1 1 _|-- - - - 477
figure 1-1 Usage of Proc statements in triggers.
Quick Reference Guide (101075201, 21 September 1992) page 1-33

UNIFACE V5.2

Special functions

Sapplname - return the name of the application.

i

{register = field_name =} $applname

Return Value The $applname function returns the name of the current application (in
uppercase). The register should be defined as a string or special string
register, unless it is a $register, in which case the type conversion will be
done automatically.

$batch - batch mode indicator.

i

{field = | register =}$batch

Return Value $batch returns the following values:

0 UNIFACE is not in a batch process.
1 UNIFACE is in a batch process.

e Y] (101075201, 21 September 1992) Proc statements Quick Reference Guide (101075201, 21 September 1992) poge2-1

1

UNIFACE V5.2

)

&= s

UNIFACE V5.2
E Name

Name $char - return the UNIFACE character code for the key that activated
the <USER KEY> or START MODIFICATION trigger.

Synopsis {field = | register =} $char

Return Value The code for the character chosen by the user, which activated a START
MODIFICATION or <USER KEY> trigger.

Name $clock - return the system time or convert the argument to the time
data type.

Synopsis {field = | register =} $clock {source}

Return Value The value returned is formatted as HH:MM:SS. If source is omitted, the
function returns the system clock time. Be aware that a correct system
time value depends on the system clock for the machine being correctly
set. If source is given, $clock converts the source into the corresponding
time.

Name Scurrhits - return the number of occurrences in the hitlist.

Synopsis {field = | register =} $currhits {(entity)}

Return Value

The number of occurrences in the hitlist. This value is negative if the
hitlist has only been partially built. Ifentity does not exist, -1 is returned.

page 2-2

(101075201, 21 September 1992) Special functions

nmnm

Scurocc - return the sequence number of the current occurrence in the
hitlist.

{field = | register =} $curocc {(entity)}

Scurocc returns the sequence number in the hitlist of the current
occurrence, or -1 if entity does not exist. The following statements and
triggers effect the value of Scurocc:

<NEXT>< OCCURRENCE> sets Scurocc.
<PREVIOUS>< OCCURRENCE> sets scurocc.
retrieve sets Scurocc.
setocc sets Scurocc.
<ADD><OCCURRENCE> modifies Scurocc.
<INSERT><OCCURRENCE> modifies Scurocc.
<REMOVE>< OCCURRENCE> modifies Scurocc.
clear resets Scurocc to 1.

$date - return the current date or convert a date string into the date data
type.

{field = | register =} $date {source}

The value of source is returned as a date data type. If source is omitted,
$date returns the current system date.

NI

Quick Reference Guide (101075201, 21 September 1992) page2-3

UNIFACE V5.2

Name $datim-return the system date and time, or convert the argument to the
date and time data type.

Synopsis {field = | register =)} $datim {source}

Return Value

111

The current system date and time if source is omitted. If source is given.
$datim converts the source to date and time format. source should be
formatted as dd-mmm-yy hh:mm:ss. Be aware that a correct system time
value depends on the system clock for the machine being correctly set.

RRRRRRRRRRRY

Name $dberror - return the specific DBMS error code.

Synopsis {field - | register =} $dberror

Return Value The value $dberror returns is set when the DBMS or network driver
encounters an error situation. The value returned is that given by the
DBMS or network to the driver, and is DBMS or network specific.

Name $dbocc - return the sequence number of the current occurrence in the
database.

Synopsis {field = | register =} $abocc { (entity) }

Return Value The following values can be returned by $dbocc:
sequence_number in the database of the current or specified entity.

page 2-4 (101075201, 21 September 1992) Special functions

UNIFACE V5.2

0 If the current occurrence has not been retrieved from
the database (it has been entered by the user, and not
stored yet).

-1 If entity does not exist.

-1 If entity is not painted on the external schema.
The following statements and triggers modify Sdbocc:
<NEXT>< OCCURRENCE> sets $dbocc.
<PREVIOUS>< OCCURRENCE> sets $dbocc.

retrieve sets sdbocc.

store sets $dbocc.

clear sets Sdbocc to 0.

Name $direction - return the structure editor mode (NEXT or PREVIOUS).

Synopsis {field = | register =} $direction

Return Value One of the following values is returned:

0 NEXT mode.
1 PREVIOUS mode.

Name $display - return the name of the current display device table.

Synopsis {field = | register =} $display

Return Value The value returned by $display is the same as the value of the
environment variable UDISP. This defaults to VT100 if it is not set.

Quick Reference Guide (101075201, 21 September 1992) page2-5

1]

UNIFACE V5.2

UNIFACE V5.2
Name $empty - test whether the specified entity or named area frame is empty. a Name
Synopsis {field = | register =} Sempty {(entity) | (named_area_frame)}

Return Value

The $empty function returns the following values:

2 There are no occurrences of entity or
named_area_frame containing data, and the frame
definition of entity or named_area_frame has Supp.
on Empty set to Y’ (Yes).

1 There are no occurrences of entity or
named_area_frame containing data but the frame
definition of entity or named_area_frame has Supp. on
Empty set to ‘N’ (No), or has been left blank.

0 The entity or named_area_frame contains at least one
occurrence with data in.

-1 The entity or named_area_frame does not exist
(usually due to a spelling mistake by you).

Name

Synopsis

Return Value

Sentname - return the name of the current entity.

{field = | register =} $entname

Sentname returns the name of the current entity. This name is always
in uppercase.

page2-6

(101075201, 21 September 1992) Special functions

n

mMmnmm

Synopsis

Return Value

$error - return the UNIFACE error message number.

{field = | register =} $error

The error code returned by $error is only valid in the entity or field level
ON ERROR trigger. The following codes are trapped by the current
version of UNIFACE. The text accompanying the error codes is supplied
by default; you can generate your own by trapping the errors in the ON
ERROR trigger. For the entity level ON ERROR trigger, the values in
table 2-1 apply:

Error code Default message

0102 Not enough occurrences in entity entity.

0103 Too many occurrences in entity entity.

0118 More occurrences are not allowed.

0139 Entity entity still has restricted links to entity.

0148 First occurrence.

0149 Last occurrence.

2004 No modifications allowed on occurrence of this entity.

2009 Occurrence locked.

2012 Occurrence in external schema does not match
database occurrence.

2013 Occurrence no longer exists.

table 2-1 ON ERROR codes and default messages (entity level).

For the field level ON ERROR trigger, the values in table 2-2 apply:

Error code Default message

0105 Not allowed to change primary/candidate key field.

0120 Error on field "field" ; subfield too large.

0121 Error on field "field" ; subfield too small.

0122 Error on field "field" ; incorrect check digit.

0123 Error on field "field" ; illegal format for numeric field.

table 2-2 continues

Quick Reference Guide (101075201, 21 September 1992) page 2-7

e e T T e e S s s e

UNIFACE V5.2
Error code Default message
0124 Error on field "field" ; illegal format for date field.
0125 Error on field "field" ; illegal format for time field.
0126 Error on field "field" ; illegal syntax format.
0127 Error on field "field" ; illegal entry format.
0128 Error on field "field" ; subfield too large to check.
0129 Error on field "field" ; subfield(s) are required.
0130 Error on field "field" ; too many subfields specified.
0131 Error on field “field" ; font not allowed.
0133 Error on field "field" ; ruler/frames not allowed.
0134 Error on field "field" ; italic not allowed.
0135 Error on field "field" ; underline not allowed.
0136 Error on field "field" ; bold not allowed.
0137 Error on field "field" ; open/close brackets do not match.
0138 Error on field "field" ; illegal format for floating field.
0150 Requested number of "&" and "|" operators not

supported.

table 2-2 ON ERROR codes and default messages (field level).

Name $fieldcheck - require field checking when the user passes through a
field.

Synopsis set $fieldcheck (field_name)

Return Value

If field checking was successfully enabled, $status is set to 1. If field
checking cannot be enabled, $status is set to -1. Inability to perform
field checking is usually due to giving a field_name that is not present, or
does not exist. This is flagged as a warning at compile time.

page 2-8

(101075201, 21 September 1992) Special functions

RRRRRRRRRRRRRRRRRRRY

UNIFACE V5.2

: i
]

Sfieldendmod - return the modification status of a field when the field
is left.

{field = | register =} $£ieldendmod

The value returned is only valid in the LEAVE FIELD trigger. It is
always 1 if the programmer has used a set $fieldcheck for the
current field. The value can be one of:

0 Not modified.

1 Modified.

Pyl
]

7

{field - | register -} S£ielcmod| (fieldl.entity})}

The following values are returned by S£ieldmod:

0 Not modified.

1 Modified

-1 field or entity does not exist (flagged as a warning at
compile-time).

$£ieldmod is modified by the following triggers and statements:

ieldmod is set to 0.

ielcmodis set to 0.

erase G&mod is set to 0.
release ieldmodis set to 0.
reload ieldamodis set to 0.
recrieve 1émod is set to 0.

Quick Reference Guide (101075201, 21 September 1992)

page2-9

UNIFACE V5.2

store

$fieldmod is set to 0.

UNIFACE V5.2

release $formdb is reset to 0.

release/e $formdb is reset to 0 if the only entities retrieved are
related to the released entity. If unrelated entities in
the external schema have been retrieved from the

Name

Synopsis

Return Value

$fieldname - return the name of the current field.

{field = | register =} $fieldname

This function is only valid in a field level trigger. It returns the name (in
uppercase) of the current field.

database, $formdb is not reset to 0.

release/e/mod $formdb is reset to 0 if the only entities retrieved are
related to the released entity. If unrelated entities in
the external schema have been retrieved from the
database, $formdb is not reset to 0.

release/mod $formdbis reset to 0.

retrieve $formdb is set to 1 by the retrieve statement.
ARETRIEVE causes the first outermost entity to be
retrieved with its related entities. Any unrelated
entities are not automatically retrieved. Internally,
the entity level flags for database origin are set. This
affects the value that $formdb becomes when any
unrelated entities use Proc statements that modify

RRRRRRRES

Name

Synopsis

Return Value

$formdb - test if any occurrences has been retrieved from a database. a $formdb.

{field = | register =} $formdb

The $formdb function returns 1 if any entity in the external schema has n

retrieve/e $formdb is set to 1 by the retrieve statement. The
specified entity is retrieved with its related entities.
Any unrelated entities are not automatically
retrieved. Internally, the entity level flags for
database origin are set. This affects the value
$formdb becomes when any unrelated entities use
Proc statements that modify $£ormdb.

11

been retrieved from a database. Only when no entities have been store $formdb is set to 1.
retrieved from a database (or when $ formdb has been reset to 0) will store/e $formdb is set to 1. Internally, the entity level flags
$formdb be 0. The following Proc statements affect the value returned for database origin are set for the entity and related
by $formdb: " entities stored. This affects the value $ formdb
. becomes when any unrelated entities use Proc

AL sEczmdb isresetito . statements that reset s formdb.
clear/e $formdb is reset to 0 if the only entities retrieved are

related to the cleared entity. If unrelated entities in

the external schema have been retrieved from the n

datubgbe, s Cormdtig notraset !0, Name $formdbmod - test if any database field has been modified.
erase $formdb is reset to 0.
erase/e $formdb is reset to 0 if the only entities retrieved are

related to the erased entity. If unrelated entities in the ”
external schema have been retrieved from the " m {field = | register =} $£ormdbmod
database, $formdb is not reset to 0.

page 2- 10

(101075201, 21 September 1992) Special functions Quick Reference Guide (101075201, 21 September 1992) page 2-11

UNIFACE V5.2

Return Value

The value of § formdbmod is 1if any fields in the external schema defSimed
as being part of a database have been modified. If no modifications hawe
been made to database fields, $ formdbmod returns 0. The following Prec
statements affect the value $formdbmod returns:

$formdbmod is reset to 0.

§formdbmod is reset to 0 if the only database Selds
modified are in entities related to the cleared entity.
unrelated entities in the external schema have
database fields that have been modified, $ formdéomoc
is not reset to 0.

clear

clear/e

$ formdbmod is reset to 0.

$£ormdbmod is reset to 0 if the only database fields
modified are in entities related to the erased entity.
unrelated entities in the external schema have
database fields that have been modified, $ formdomoc
is not reset to 0.

erase

erase/e

$formdbmod is reset to 0.

§£ormdbmod is reset to 0 if the only database fields
modified are in entities related to the released entity.
If unrelated entities in the external schema have
database fields that have been modified, $ formdbmod
is not reset to 0.

release/e/mod $formdbmod is set to 1. Internally, the modification
status is only set for the specified entity and related
entities. Consequently, Proc statements that reset the
modification status for unrelated entities do not cause
§£ormdbmod to be reset (remember $formdbmod is
evaluated as an inclusive OR for all entities in the
external schema).

$formdbmod is set to 1.

$ formdbmod is set to 1 only if the removed occurrence
is in the database. If the user has added an occurrence,
but not stored it in the database, $ formdbmod is not
altered by remocc. The entity level modification flags
are set only for the entity, and its related entities.
$formdbmod cannot be reset, but a reset $formdb
causes $formdbmod to be reset.

$formdbmod is reset to 0 if the only database fields
that have been modified are in entities related to the

release

release/e

release/mod

remocc

reset

retrieve

P e, T |

(101075201, 21 September 1992) Special functions

ﬁ
ﬁ
ﬁ
ﬁ
ﬁ
e
ﬁ
p
e
a
p
p
a
e
?

retrieved entity. If unrelated entities in the external
schema have database Selds that have been modified,
$formdomod is not reset to 0. A "RETRIEVE causes
the first outermost entity to be retrieved with its
related entities. Any unrelated entities are not
automatically retrieved.

Sformdbmod is reset to 0 if the only database fields
that have been modified are in entities related to the
retrieved entity. If unrelated entities in the external
schema have database fields that have been modified,
$formdbmod is not reset to 0. Any unrelated entities
are not automatically retrieved.

set $formdbmod cannot be set. Unlike reset, setting
$formdb has no effect on S formdbmod.

retrieve/e

$formdbmod is reset to 0.

s formdbmod is reset to 0 if the only modified database
fields are in entities related to the stored entity. If
fields in unrelated entities in the external schema
have been modified, $ £formdbmod is not reset to 0.

store

store/e

Refurn Value

$formmod - test if the form has been modified.

{field = | register =} $formmod

The value of $ formmod is 1if any field in the external schema has been
modified. If no modifications have been made, Sfo od returns 0. The
following Proc statements affect the value $formmod returns:

clear $formmod is reset to 0.

clear/e $formmod is reset to 0 if the only fields modified are in
entities related to the cleared entity. If unrelated
entities in the external schema have fields that have
been modified, $ formmod is not reset to 0.

creocc $formmod is set to 1. The entity level indicators are

only set for the entity and its related entities.

Quick Reference Guide (101075201, 21 September 1992)

poge 2- 13

|
|

UNIFACE V5.2

erase

erase/e

examine

release

release/e

release/e/mod
release/mod

remocc

reset

retrieve

retrieve/e

set

store

store/e

$formmod is reset to 0.

$formmod is reset to 0 if the only fields modified arein
entities related to the erased entity. If unrelated
entities in the external schema have fields that have
been modified, $formmod is not reset to 0.

$formmod is set to 1, and displayed, if any fields of
entities in the external schema have been modified If
no fields of entities in the external schema have been
modified, $formmod is reset to 0 and displayed.

$formmod is reset to 0.

$formmod is reset to 0 if the only fields modified are in
entities related to the rel d entity. If unrelated
entities in the external schema have fields that have
been modified, $formmod is not reset to 0.

$formmod is set to 1.

$formmod is set to 1.

$formmod is set to 1. The entity level indicators are
only set for the entity and its related entities.

$formmod is reset to 0. For consistency, $ formdomod
is also reset.

$formmod is reset to 0 if the only fields that have been
modified are in entities related to the retrieved entity.
If unrelated entities in the external schema have
fields that have been modified, $ formmod is not reset
to 0. A ARETRIEVE causes the first outermost entity
to be retrieved along with its related entities. Any
unrelated entities are not automatically retrieved.
$formmod is reset to 0 if the only fields that have been
modified are in entities related to the retrieved entity.
If unrelated entities in the external schema have
fields that have been modified, $ formmod is not reset
to 0.

$formmod is set to 1. Unlike reset, set does not
change the value of $formdbmod.

$formmod is reset to 0.

$formmod is reset to 0 if the only modified fields are
in entities related to the stored entity. If fields in
unrelated entities in the external schema have been
modified, $ formmod is not reset to 0.

page 2- 14

(101075201, 21 September 1992) Special functions

MNINNNNNINN

UNIFACE V5.2

Name $formname - return the name of the form (external schema).

Synopsis {field = | register =} $formname

Return Value $formname returns the (uppercase) name of the current external
schema. If no external schema is current, $formname returns the name
of the application.

Name $framedepth - depth of the painted frame.

Synopsis {field = | register =} $framedepth { (frame)}

Return Value The value returned is the number of lines on the screen required to paint
frame, or if frame is omitted, the number of lines used by the current
frame.

Name $gui - return the mnemonic for the user interface UNIFACE is using.

Synopsis {field = | register =} $gui

Return Value The mnemonic identifying the current user interface. Valid values

include "MTF" for Motif, "OLO" for open look and "CHR" for a character
based interface.

Quick Reference Guide (101075201, 21 September 1992)

page 2-15

UNIFACE V5.2
Name $hits - return the number of occurrences in the hitlist.
Synopsis {field = | register =} $hits{ (entity)}

Return Value

Shits returns the total number of occurrences in the hitlist. It is
initialized by building the hitlist, which can be time-consuming. The
following statements affect the value of $hits:

clear Shits is reset to 0.

release Shits is reset to 0.

Name

Synopsis

Return Value

$ioprint - return the type of message in the message frame.

{field = | register =} $ioprint

The following values are returned by $ioprint:

No information.

1 Store sequence messages.

2 One-line I/O messages.

4 Return values from fetch and select statements.

8 Open description block.

16 where and order by description.

32 Generated SQL (if available).

64 System messages such as the command spawned by a
spawn statement or an operating system error
message.

128 Calls to UOBJECT and data I/O messages.

MININIMNNINMMM

page 2- 16

(101075201, 21 September 1992) Special functions

UNIFACE V5.2

Return Value

Skeyboard - set or return the current keyboard translation table.

{field - | register =} Skeyboard {= "table"}

The value returned is the keyboard model currently in use.

Retumn Value

Slanguage - set or return the current language code.

{field = | register =} $1anguage {= "code"}

$language returns the country code currently in use.

$lines - return the number of lines left on the current (printed) page.

{field = | register =} $1ines

Refumn Value When printing ($printing is 1), $1ines returns the number of lines
remaining on the page, not including the header or trailer frames.When
UNIFACE is not printing ($printingis 0), the value of $1inesis 0, and
Sstatus is set to -1.
. Quick Reference Guide (101075201, 21 September 1992) page 2- 17

UNIFACE V5.2

UNIFACE V5.2

Name

Synopsis

Return Value

$next - return the value of the next occurrence of a field.

{field = | register =} $next (field)

The $next function returns the value of field in the next occurrence. A
NULL value will be returned when there is no next occurrence. This can
be tested for with:

if ($next(field) = ')

Name

Synopsis

Return Value

$number - return the value of the numeric part of a string.

{field = | register =} $number ("string")

Soccdel - return the removal status of an occurrence (if it has or has not
been removed by the user).

{field = | register =} $occdel| (entity)}

This function is only valid in the DELETE trigger. The value returned is
one of the following:

0 Occurrence is not marked for removal.

4 Occurrence is marked for removal.

-1 entity does not exist (flagged as a warning at compile
time).

Soccdel is modified by the following statements and triggers:

erase $Soccdel is set to 1.

<REMOVE OCCURRENCE> $occdel is set to 1.

$number returns the value of the leading numeric part it encounters of
string. If string contains no numeric text, or starts with alphabetic text,
$number returns 0.

Name

Synopsis

Return Value

Socccheck - require modification checks for an occurrence.

set $occcheck (entity)

Soccdepth - depth of the painted occurrence.
{field = | register =} Soccdepth

The number of lines an occurrence requires to be painted on the screen.

If the set $occcheck was successful $status is set to 1. If the set
$occcheck failed, $status is set to -1. This can be due to entity not

” Synopsis
existing or not being painted on the external schema (this is flagged as a

warning at compile-time).

Soccmod - return the modification status of an occurrence.

{field = | register =} Soccmod/{ (entity)}

page 2-18

(101075201, 21 September 1992) Special functions

Quick Reference Guide (101075201, 21 September 1992)

page 2- 19

UNIFACE V5.2

Return Value

The following values are returned by $occmod:

0 Not modified.

1 Modified.

-1 Ifentity does not exist or is not painted on the external
schema.

The value of $occmod is modified by the following trigger and
statements:

EXECUTE $Soccmod is set to 0.
store $occmod is set to 0.
release $occmod is set to 0.
retrieve $occmod is set to 0.
clear $occmod is set to 0.
reload $occmod is set to 0.

Name $page - return the current (printed) page number.

Synopsis {field = | register =} $page

Return Value spage returns the page number of the page currently being prmted Ifno
page is being printed, $Spage returns 0.

Name $password - return the password used to log on to the database via the
specified path.

Synopsis {field = | register =} Spassword (path)

page 2 - 20

(101075201, 21 September 1992) Special functions

lllllllll!l!i&%—

—

NN

UNIFACE V5.2

Return Value Spassword returns the password used to log on to the DBMS given by
path. If no password was required to log on to the DBMS, 0 is returned.

Name Sprevious - return the value of the field in the previous occurrence.

Synopsis {field = | register =} $previous (field)

Returmn Value The $previous function returns the value of the previous occurrence of
field. A NULL value is returned when there is no previous occurrence.
This can be tested for with:
if ($previous(field) =

Name $printing - test if printing.

Synopsis {field = | register =} $printing

Retum Value $printing returns the following values:
0 UNIFACE is not printing.
1 UNIFACE is printing.

Name $prompt - position the cursor at the specified field when the current Proc
ends.

Synopsis Sprompt = field|.entity}

Quick Reference Guide (101075201, 21 September 1992)

page 2-21

UNIFACE V5.2

Return Value

None.

Name

Synopsis

Return Value

$result - the value returned by certain Procs.

{field = | register =} Sresult

$result is set by many Proc statements. Refer to the documentation for
the individual Proc statements for the values Sresult can contain.

Name

Synopsis

Return Value

$rettype - return the retrieval mode of the outermost entity.

{field = | register =} Srettype

The following values are returned when in a READ trigger:

78 Next occurrence.
82 Retrieve.
110 Retrieve (seq).

In the <ADD/INS. OCCURRENCE> trigger, the following additional
values are returned:

65 Add occurrence.
73 Insert occurrence.
$rettype is set by the following:

® read.

¢ AADD AOCCURRENCE.
* AINSERT AOCCURRENCE.

page 2 -22

(101075201, 21 September 1992) Special functions

MR

[

Retum Vaiue

UNIFACE V5.2

contents of the structure editor select
the new data overwrites any
buffer. Field data is sent to this buffer with the

Selected block).
Selected block).

AFIELD Insert removed field.

*TEXT Insert removed text.

If 2 decimal value is assigned to
e nearest integer. In general:

indicates an error.

2 warning or information.

ration

ue of Scurocc after a setocc statement.

poge 2-23

UNIFACE V5.2 UNIFACE V5.2

Return Value $status is set by the $text function.
Name $storetype - return the type of update in a WRITE trigger (insert or y
update). -1 If the field does not exist.
” -2 If the help file contains information from a different
version (message 0019 - Form formname has
S 1 = A wrong version; you must recompile itis
ynopsis {field = | register =} $storetype| (entity)} displayed), or cannot be interpreted (the file is not a
help file, message 0020 - File formname not
” recognized as application or formis
displayed).
Return Value The following values are returned: ” e
0 Will be updated.
1 Will be inserted. ” i : : :
The value of $storetype is set to 1 by the store and release/mod ame $time - return the system time (pre-version 5.0), use $clock instead.
statements, and by the AADD AOCCURRENCE function. It is set to 0 by
the retrieve statement.
” Synopsis {field = | register =} $time
Name $syntax - check if the string matches the specified pattern. ”
Return Value $time returns the system time, accurate to one second.
Synopsis {field = | register =} $syntax (string)
” Name Stotdbocc - return the number of occurrences of the entity that have
been retrieved from a database.
Return Value In a comparison, $status is TRUE (non-zero) if the string it is being ”
compared against matches the pattern given as an argument. It is best
to use $syntax in an if expression. For example: ” Synopsis {field = | register =} $totdbocc| (entity)}
if (@$fieldname = $syntax("New*"))
This matches all text entered in the current field that starts with ‘New’.

Return Value The total number of occurrences of entity currently fetched from the
database. The following triggers and statements affect the value of
$totdbocc:

Name Stext - access text stored in the central message database (UOBJECT). ” ANEXT AOCCURRENCE $totdbocc is set to the number
retrieved.
” APREVIOUS AOCCURRENCE $totdbocc is set to the number
Synopsis {field = | register -} Stext (idstring) l retrieved.
l Quick Reference Guide (101075201, 21 September 1992) poge 2-25

page 2-24 (101075201, 21 September 1992) Special functions

UNIFACE V5.2 a UNIFACE V5.2
retrieve $totdbocc is set to the number retrieved. read $totocc is set to the total number
& of occurrences of an entity.
store Stotdbocc is set to the number stored. :
@ retrieve $totocc is set to the total number
clear Stotdbocc is set to 0. a of 65a nces of an entity.
AADD "OCCURRENCE $totocc is incremented by 1.
a AINSERT AOCCURRENCE Stotocc is incremented by 1.
Name $totlines - return the total number of lines available on the page for AREMOVE "OCCURRENCE Stotocc is decremented by 1.
printing. clear $totocc is set to -1.
Synopsis {field = | register =} $totlines
a Name $user - return the user name.
Return Value When UNIFACE is printing ($printing = 1), $tot lines returns the . ’ - .
total number of lines available for printing, excluding the number of lines Synopsis {field = | register =} Suser{(path)}
required for any headers or trailers. If UNIFACE is not printing when
Stotlines is used (thatis, $printing = 0), UNIFACE returns a value
of -1 to $status. The value of $tot lines is 0 when UNIFACE is not
printing. Return Value Suser returns the current user name.
Name $totocc - return the number of occurrences of an entity in the external a Name Svariation - return or set the variation code.
schema.
Synopsis {field = | register =} $variation (=" string"}
Synopsis {field = | register =} $totocc{ (entity)} a
a Retumn Value Svariation returns the current variation code.
Return Value $totocc returns the number of occurrences in the external schema.
When the external schema is empty, $totocc always returns 1. The a
following triggers and statements modify the value of $totocc:
ANEXT AOCCURRENCE St oEGeE 1a set o the total nombEl a Name Sworkfilesize - return the size of the virtual memory swap file.
of occurrences of an entity.
APREVIOUS AOCCURRENCE Stotocc is set to the total number

of occurrences of an entity. {field = | register =} $workfilesize

o

page 2 - 26 (101075201, 21 September 1992) Special functions Quick Reference Guide (101075201, 21 September 1992) page 2-27

UNIFACE V5.2

Return Value

$workfilesize returns the current size of the complete virtual page
swabp file, both on disk and in the primary page swap area in real memory
(that is, the sum of $wflsize and $wf2size);in blocks of 512 bytes.

1

e i

Name

Synopsis

Return Value

$wilsize - return the size of the real memory swap space.

{field = | register =} $wflsize

$wflsize returns the current size of the primary page swap area in real
memory, in blocks of 512 bytes.

a Chapter 3

Name

Synopsis

Return Value

$wf2size - return the size of the disk based swap space.

{field = | register =} Swf2size

Swf2size returns the current size of the page swap file on disk, in blocks
of 512 bytes.

RRRRRRRRRRRRRY

UNIFACE V5.2

Extracting values from the data

This chapter describes how you can extract values from data, and how to
convert from one type of data to another. Quite often, the programmer
needs to extract only part of the data, for example, the last five characters
in a string, the day of the week of a date, or the fractional part of a
number. Another common requirement is to convert values of one type
into another. Examples of this include strings to times, strings to
numbers, and numbers to strings.

In most situations, UNIFACE is intelligent enough to automatically
convert to the appropriate data type. There are some situations, though,
where it is necessary to explicitly tell UNIFACE how to convert values.
This chapter shows how to do this.

The following data types can be used to store strings:

* S - Strings. These are only the ASCII printable character sets.
® SS - Special strings. These allow the use of all the fonts provided by
UNIFACE.

3.1.1 Exiracting values from strings

When you are working with data stored as a string, you can extract
substrings from the total string. This extraction is done by specifying the
offset within the string, indicating from which position you want to
extract the substring. The format for this is:

{destination = } source [start{: num/|, end}]

page 2-28

(101075201, 21 September 1992) Special functions

Quick Reference Guide (101075201, 21 September 1992) page 3- 1

UNIFACE V5.2

o

3.1.2 Rules for string extraction

UNIFACE V5.2

* Ifstringextraction is used on a non-string source (for example, a date
or numeric field), the value is first converted to string format
according to the default display format.

The syntax of string extraction is explained in table 3-1:

Par Expl ion * The first position in the string is always number 1.

Tt Position ritmber fam which to/start extractng . ;t;:;,si:;l and num must contain either an integer constant or a
end Position frurtiher at: ‘.NhiCh to stop extracting. * Ifstring éxtraction is applied to a field containing subfields,
m::;mma) gﬁm‘;‘z:’;ﬁﬁz‘zzx ;:::g;‘:f;::;;‘lam UNIFACE treats the contents qf the t?omplete field as one string for
': (colon) Follows start if the next parameter is num. the purposes of the extraction (including the separators).

* Extraction always has a lower priority than indirection.

table 3-1 String extraction codes. In addition to string extraction, UNIFACE provides the length and
scan statements. These statements are very useful when used with

Examples string extraction. The format for these statements is:

The following examples show how to use the string extraction facilities of
Proc. The example manipulates the data in the field NAME, which
contains the string HOLLERITH. The example also illustrates the use of
indirection with a $register ($10). This $register contains the value 2,
which is used as offset into the string.

length string ; set $result to the length of string.

scan string, "profile" ; set $result to the position of the start of the
; substring that matches profile.

$1 = NAME[4,8] ;extract positions 4 to 8 : (LERIT) g 2
$1 = NAME[1:3] jextract positians 1 to 3 : (HOL) 3.1.3 Converting to strings

$1 = NAME[$10:4] ;extract positions 2 to 5 :(OLLE) . .

$1 = NAME[3) sextract positions 3 to end: (LLERTTH) UNIFACE ensures that automatic type conversion takes place when you

assign a value to a string field or register. When applying this conversion,
UNIFACE uses the display (DIS) format defined for the field or register.

When a local or global register has a data type of any ($), or a $register
is used, the register inherits the display (DIS) format of the value
assigned to it. For example, if a numeric field has a display format of
DIS(z99P99), and a value from this field is assigned to a register, the
display format of this numeric field is used for the register. This display
format is then used if the value in the register is assigned to a string.

Note: Using string extraction on a string containing UNIFACE frame
markers will not copy the frame markers. You have to copy the whole
string with an assignment statement.

For example, a value in a numeric field is assigned to a $register. The
numeric field has a display format of DIS(99P9P99). After the
assignment, the $register will have a numeric data type, and a display
format of DIS(99P9P99). If the value in the $register is then assigned to
a string field, the value in the string field will be formatted as 99P9P99.

The following rules are applied when string extraction is performed.

® destination is always set to empty (that is, an empty string is
returned) if any of the following are true:
e start, end or num is less than 1.
® start is greater than end.
® start is greater than available number of characters.

* start,end and num may not be an arithmetic expression;
[$result + 1] is therefore an illegal construction.

* start,end and num may be a constant, a $register, $status or
Sresult.

e Ifend or num has a value greater than the available character
positions, the characters are extracted to the end of the string.

NN

page 3 -2

(101075201, 21 September 1992) Extracting values from the data Quick Reference Guide (101075201. 21 September 1992) page 3-3

UNIFACE V5.2

3.2 Date and time

There are a wide variety of date and time formats. The data types that
can be used for a field or register are:

¢ D -date.

e LD - linear date.

e T-time.

e LT - linear time.

* E -time and date.

* LE - linear time and date.

3.2.1 Information about date and time

Internally, UNIFACE handles all dates, times and date/times as double
precision float values. This value is always the number of days since the
base date of 1-JAN-0000 00:00:00, using days as the unit of
measurement. The integer part of this value represents the day,
therefore, and the fraction the time part of the day.

This means that a date value (that is, no time included) is really a
combined date/time value, with the time set to null. Similarly, a time
value is also a combined date/time value with the date value set to null.
Be aware that elapsed time is handled in the same way; that is, elapsed
time is also the number of days since 1-JAN-0000 00:00:00.

One of the major advantages of this system is that arithmetic with dates
or times is extremely simple. For example, adding the value 1.5 to a date
is equivalent to adding one and a half days, because for UNIFACE the
value 1.5 means one and a half days.

The examples in table 3-2 show how UNIFACE interprets values:

Value Interpreted as

0 Date (null) time (null)

0.5 Date (null) 12:00:00

1 1-jan-0000 time (00:00:00)
1.5 1-jan-0000 12:00:00

table 3-2 How UNIFACE interprets values.

page 3-4

(101075201, 21 September 1992) Extracting values from the data

MMM

UNIFACE V5.2

Year 0 is a leap year

Bear in mind when performing calculations with dates, particularly
those involving elapsed times with the results expressed in months, that
year 0 contains 366 days and February 29.

3.3 Units of measurement for use in Procs

Each unit of date and time has its own code which you can use in Procs.
UNIFACE converts these codes internally to the equivalent number of
days. For example, one second (code: ‘1s’) is 1/8640000 (1.1574 * 106)
days, and is handled by UNIFACE as such. Using a common unit of
measurement for all parts of the whole makes very complex arithmetic
possible.

3.3.1 Codes for date and time arithmetic

O

The codes available for date and time arithmetic are shown in table 3-3:

Code MeaningValue
(as fraction of 1 day)

d Day 1

h Hour 1724

n Minute 11440

s Second 1/86400

t Tick 1/8840000

table 3-3 Date and time arithmetic codes.

In version 5.0, ‘n’ was introduced to stand for minutes both here and in
the supported display format codes. This was done to avoid confusion
with months. UNIFACE still recognizes the code ‘m’ in display format
definitions to mean either minutes or months. The true meaning of ‘m’ in
display format definitions is understood according to the context; that is,
the position of this syntax code.

Note: There are no arithmetic codes for months or years because neither of
these contains a fixed number of days. If you need to add or subtract

Suick Reference Guide (101075201, 21 September 1992)

page3-5

UNIFACE V5.2

months from a date, use the addmonths statement. Weeks are not
represented here as they are superfluous. After all, a week is always seven
days (7d).

3.3.2 Examples of how UNIFACE treats date and time values

3.3.3 Limit values

A

The above codes can be used as numeric constants in Procs. The Proc
compiler automatically converts these codes to the relevant floating
value. For example, table 3-4 shows how various expressions are
interpreted by UNIFACE:

Expression Value (as a fraction of 1 day)
1t 1/8640000

1s 1/86400

in 1/1440

1h 1/24

1d12h 15

2t 1/4320000

2s 1/720

2h 112

table 3-4 Example date and time code values.

Arithmetic with date and time can consist of the full range of operations;
that is, addition, subtraction, multiplication and division. Use the codes
for arithmetic as described in subsection 3.3.1 Codes for date and time
arithmetic.

The range of values recognized by UNIFACE lies between 1 January
0000 00:00:00.00 and 31 December 9999 23:59:59.99, inclusive. Any
calculation which results in or uses a value outside these limits is an
unreasonable calculation for UNIFACE and the result is not always
predictable. Suffice to say that it will be almost certainly incorrect.

Caution: Some operations are ridiculous in certain circumstances and
should not be used. For example, what would a programmer mean with
the expression (2 * $date)? On the other hand, the construction

—
—
—
—
—
—
e
—
—
—
—_

page 3-6

(101075201, 21 September 1992) Extracting values from the data

UNIFACE V5.2

((4 * elapsed_time)/$1) is reasonable, if the ELAPSED TIME
field contains an elapsed time which is not too big for this calculation, and
if $1 contains a numerical value.

Ifyou enter a value outside these limits, UNIFACE ‘beeps’ and refuses to
continue until you have corrected the error.

3.3.4 Normalization of time and date values

UNIFACE automatically normalizes all expressions, used to the internal
equivalent in numbers of days since 1 January 0000 00:00:00.00. This
has the following very important implications:

* The designer does not need to worry about which units of date or time
to use when coding Procs because (for example) the expression
"8640000t" (8640000 ticks) is the same as "1d" (one day): UNIFACE
treats both these expressions as one day, because there are 8640000
ticks in a day.

* The results of some calculations might be a little confusing,
particularly when doing either of the following:
¢ Calculating the elapsed time between two dates.

* Expressing the result in months.

For example, although the elapsed time between 1 March 1990 and 1
May 1990 is two months, UNIFACE would return an elapsed time of
two months and one day, because the difference is 61 days which, in
year 0, (year 0 is a leap year) takes us to 1 March.

Be warned that giving years and months a linear display format can have
strange effects (see the above examples!). This is because UNIFACE uses
the same rules to work out the linear values as are used for non-linear
date/times; that is, all values use the base date of 1 January, 0000.

Leap years

Remember that year 0 is a leap year, which means that year 0 has 366
days, and year 1 has 365 days. Year 2 means a total of 731 days,
therefore. If the difference between two dates is more than one year, the
first year in the ‘counter’ stands for 366 days and not 365, as you might
expect.

Some months are more equal than others

Month 1 has 31 days, because month 1 is January. If you express an
elapsed time as the number of months, UNIFACE counts off 31 days for

‘ l Quick Reference Guide (101075201, 21 September 1992) page 3-7

UNIFACE V5.2

the first month, even though your elapsed time might be the difference
between 3-jul-1990 and 4-sep-1990. %
Similarly, the second month is February, which usually comprises 28
days, so UNIFACE counts off 28 days for the second month, even if your
elapsed time is the difference between two dates in the middle of the
year. However, if the year is a leap year (and year 0 is a leap year),
February has 29 days, so UNIFACE counts off 29 instead of 28 days for
the second month; month 2 in this case means a total of 60 days, therefore
(31 +29).

For example: DIS(id.m.y)

The elapsed time between 3-jul-1990 and 4-sep-1990 is an arithmetic
operation which results in three days, two months and zero years. The
actual number of days between these two dates is 63, which means one
month of January (31 days), plus one month of February in a leap year
(29 days), because there are zero years, and year 0 is a leap year, plus
three days.

A recommendation

Where possible, avoid the use of months in linear date display format
definitions. The number of days is usually sufficient.

Examples of linear date values

In the following example, LDATE is a field with the display format
DIS(ld.m.y). The example sets $registers $1 to $5 to various date values,
then sets the LDATE field to various values by subtracting one $register
from another.

$1
$2

Sdate("1 feb 89")
Sdate ("1 maxr 89")
$3 Sdate ("1 apr 89")
$4 = Sdate("l may 89")
$5 = $date("1l jan 88")
ldate = §2 - $1

;ldate is now 28.0.0 (28 days)

ldate = §3 - $2 ;ldate is now 0.1.0 (31 days)
ldate = $4 - $2 ;ldate is now 1.2.0 (61 days)
ldate = §1 - §5 ;ldate is now 0.1.1 (397 days)
ldate = $1 + 5 ;ldate is now 6.1.1989

Examples of date and time arithmetic

The following examples show how to do arithmetic operations with date
and time values:

page 3-8

(101075201, 21 September 1992) Exiracting values from the data

111

=

UNIFACE V5.2

start_datim - end datim ;elapsed (date)time

$2 = datefield ;pick up a date value
$3 = timefield ;pick up a time value
$4=952+83 ;make cambined date/time
$5 =64 + §1 ;add elapsed date/time in $1 to $5
+1s ;add 1 second to date/time in $5
5 + In ;add 1 minute
5 + Inls ;add 1 minute and 1 second
efield = datefield + 4d ;add 4 days

field = datimfield + .5d ;add half a day (12 hours)
1 = datefield + 7.5d ;come back next week at 12 noon
1 = datimfield + 7dl2h ;add one week and half a day

Note: Assigning a negative value to a linear date, linear time, or linear
date/time value, results in an incorrectly displayed value. If you are
evaluating an expression that can result in a negative linear value, assign
it to a numeric field, not a linear field.

” 3.35 Exiracting values from date and time data

MMM

When you are working with data stored as a date, a time or a combined
date and time, you can extract information such as the week number
from a date, the month name from a date, or the number of minutes in a
particular time. This extraction is done with an extraction code. The
format for using extraction codes is:

(field | register) = source [code

The type of data to be extracted is specified by the code; each type of
extractable data has its own code. For example, the code for extracting
the day number from a date is a capital ‘D’. All the possible extraction
codes are listed in table 3-5:

Extract Code
Day number D
Month number M
Year (four digits) Y
Fiscal year (four digits) X
Week number w
Day of week (Monday = 1) A
Hour (24 hour clock) H

table 3-5 continues

Quick Reference Guide (101075201, 21 September 1992) page 3-9

UNIFACE V5.2 UNIFACE V5.2

The following example shows how date and time arithmetic can be

Extract Code combined with the extraction facilities provided by UNIFACE:
if (Stime < datimfield[clock] + 22s5t)
Minutes N’ message "This date/time is < 22.05 seconds from now"
Seconds S endif
Ticks (1/100 of a second) T
Three-letter month abbreviation mmm
Three-letter month abbreviation with initial capital Mmm 3
Month name (spelled out) mmm* 3.3.6 Week numbering
Month name (spelled out) with initial capital Mmm*
Two-letter ab{)rZViation fgr day name z aa The rule for week numbering in UNIFACE complies with the ISO 2015
Two-letter abbreviation for day name with initial capital Aa standard for w_eek numbering. This standard can be reduced to the
Three-letter abbreviation for day name aaa following rules:
Three-letter abbreviation for day name with initial capitaIAa’a e Monday is day 1 in the week.
Day name (spelled out) SR 3 aa. * Sunday is day 7 in the week.
Day name (spelled out) with initial capital Aa * The rule for determining which week is week 1 works as follows:
The date part r date * Week 1 begins on a Monday.
The time of day from date/time clock * January 1 falls in week 1 if it is a Monday, Tuesday, Wednesday
: : or Thursday.
e 0. LDl e o enicoes. * January 1 falls in week 53 of the previous year if it is a Friday,
Saturday or Sunday.

Examples
The following examples show how you can use the extraction codes to test
values and to convert a date into the day name:

trigger: LEAVE FIELD
if (delivdate[A] > 5) ; 6 or 7, which is Saturday or Sunday

3.3.7 Converting to a date or time value

message "Deliveries cannot be on a weekend!"

return (-1)
else

message "Delivery booked for a %3delivdate[aa*]" ; day name spelled out.
endif

TINCORRECT:

$1 = "08-nov-1961 22:00:00"

$2 = $l(clock] ; this is incorrect because $1 is a string, not a time.
; $1 needs to be converted into a date/time data type,
; with the use of $datim.

CORRECT :

S1 "08-nov-1961 22:00:00"

$2 $datim($1) [clock] ; value in $1 is a date/time, so $2 will be set to

; 22:00:00

1. An ‘N’ is used to make clear the difference between minutes and months. You can use an ‘M’ if the context
is clear, but this is only provided for pre-version 5.0 compatibility. Use ‘N’ instead.

page 3- 10

(101075201, 21 September 1992) Extracting values from the data

RRRRRRRRRRRRRRRRRRRY

UNIFACE provides the $clock, $date and $datim functions for
converting a string to a date or time. If you want to convert numeric data
into a time or date, you should define a numeric register with the
appropriate display (DIS), assign the numeric value to this register, then
use Sclock, $date or $datim. These functions are:

* Sclock - convert string argument to time.
* Sdate - convert string argument to date.
® Sdatim - convert string argument to date and time.

The functions expect the string argument to use the default date and
time formats.

338 Converling to dates

To convert a string into a date, you should use $date. For example:

Suick Refierence Guide (101075201, 21 September 1992) page 3-11

UNIFACE V5.2

$1 = "1/2/91"

$2 = $date($1) ; set $2 to the date 1-feb-1991

The above example gives the correct value in $2 if the default date format
is dd-mmm-yyyy. If the default date format was mmm-dd-yyyy, the above
example would not be correct. The value of $2 would be jan-2-1991.

The default date and time formats are defined as part of the Language
setup facility in the Miscellaneous IDF tasks menu.

If the argument has a different format to the default, you must convert it
into one that UNIFACE can work with. Typically, string information
that represents a date, but is formatted in a different way than the
default, will be either a text dump from a database or data from another
package that uses a UNIFACE supported DBMS. You have the following
choices when converting this data:

* Change the default so that the default reflects the data.
e Change the data so that the data reflects the default.

To change the default, you need to change the $language and
$variation codes to select a default format that is the same as the
string argument. Then use $date to convert the value, then reset
$language and $variation.

To change the data, you can use a combination of scan and the string
extraction functions to build a string that is formatted according to the
default date format. For example:

$1 = DATE FIELD AS_STRING
scan DATE_FIELD AS_STRING,"/"

; formatted as "nm/dd/yyyy"
; find first "/" character

$3 = Sresult ; save position

scan DATE_FIELD AS_STRING([$3],"/" ; find second "/" character
$4 = Sresult ; save position

SMONTHS = $Srumber (DATE_FIELD AS_STRING) ; extract month

SDAYS = $number (DATE_FIELD AS STRING[($3 + 1)]) ; extract day

$YEAR = $number (DATE_FIELD AS STRING[($4 + 1)]) ; extract year

; now rebuild date according to DD/MM/YYYY,

; and convert this to a date with $date
$SCONVERTED_DATES = $date ("$%$DAYS/$$SMONTHS /$£SYEARS ")
If you do have to implement something like this, it is usually worthwhile
defining it as a central Proc, and using global rather than local registers.
Functions like these tend to be quite useful. If these functions are
frequently used, and speed is required, you can implement them in 3GL.
Refer to the Using 3GL with UNIFACE manual for more information.

page 3 - 12

(101075201, 21 September 1992) Extracting values from the data

NI

UNIFACE V5.2

3.3.9 Converting to times

To convert a string into a time, you should use sclock. The $clock
function uses the default time format. The default time format is defined
as part of the Language setup facility in the Miscellaneous IDF tasks
menu.

It is very simple to use $clock, for example:

$1 = "12:23:00"

$2 = $clock($1) ; set $2 to the time 12:23:00

The time need not have separator characters, if the time has enough
digits (six), $clock converts it correctly too. For example:

$1 = "122300"

$2 = $clock($1) ; set §2 to the time 12:23:00

If, however, the argument has fewer than six digits (and no separators),
$clock assumes that part of the time has been omitted, for example, the
time is in hours, not hours, minutes and seconds. How $clock interprets
times is shown in table 3-6:

Number of digits Interpreted as

HH:MM:SS
H:MM:SS
HH:MM
H:MM

HH

H

“-—NwsrpOO

table 3-6 Converting strings to time with $clock.

A simple workaround for this situation is to define a numeric local or
global register with a display format of DIS(999999). Assign the required
value to this register, then convert this register into a time with the
Sclock function. If the data may or may not contain separator
characters, you may have to write a Proc module like the following:

TO_TIME - convert raw text to time

s Proc converts a free format text field

a time field.

es a mumeric or string central register,
Gepending on whether the data is formatted or not.

$2 = result, as a time
Quick Reference Guide (101075201, 21 September 1992) page 3- 13

UNIFACE V5.2

; $$string time = central register, string
; $$mumber_time = central register, muber, display as 999999

; is $1 formatted ?
if ($result > 0) ; $1 contains a ‘:’

$$string time = $1 i keep format

$2 = Sclock($Sstring time) ; convert to time using formatted data
else

$Smumber_time = $1

$2 = $clock ($$mumber_time)
endif

This central Proc is used in the example given in the description of the
EXECUTE trigger.

scan $1,':’

; $1 is raw text data, so force leading zexos
; convert six digit mamber to time

3.3.10 Converting to a date and time

To convert a string into a combined date and time, you should use
$datim. The $datim function expects the string to be formatted in the
same way as that defined as part of the Language setup facility in the
Miscellaneous IDF tasks menu. This is dd-mmm-yy hh:mm:ss for the
USA, USYS variation.

The following example shows the use of $datim to convert a string
containing a time and a date into a combined date and time value:

$1 = "27-02-66 12:23:39"
$2 = $datim($1)

If either the time or the date that you are trying to convert is not
formatted in the same way as the default, you should follow the same
steps as those outlined in subsection 3.3.8 Converting to dates.

; $1 will be a string
; $2 will be a carbined date and time

3.3.11 Converting to time from a number

The $clock function converts a number into a time. As part of the
conversion process, the number is converted into a string. By default, a
number does not have any leading zeros, so Sclock does not correctly
convert numeric values less than 10000. For example:

; supposedly 1 mirute, $1 will contain the value 100
; $2 will be set to 1:00 hours

$1 = 000100

$2 = $clock($1)
The correct way to convert a number into a time is to use a numeric
register that has a DIS(999999) display format. This ensures values are
correctly converted to strings, and thence to times.

page 3 - 14

(101075201, 21 September 1992) Extracting values from the data

1RRRRRRRRRRRRRRRRRRRY

3.4 Numbers

UNIFACE V5.2

The following data types can be used to represent numbers:

¢ N - numeric.
¢ F - floating point.

3.4.1 Exiracting values from numeric data

342 Rounding

When you are working with data stored as a numeric or floating point
value, you can extract information such as the integer part or the
fractional part of this value. This extraction is done with an extraction
code. The format for using extraction codes is:

(field | register) = source[code]

The type of data to be extracted is specified by the code. For example, the
code for extracting the fractional part of a number is ‘fraction’. All the
possible extraction codes are listed in table 3-7:

Extract Code
The integer part of a number trunc
The rounded value of a number round
The fractional part of a number fraction

table 3-7 Number extraction codes.
Examples

The following examples show the use of the UNIFACE number
extraction facilities:

$25 = 123.76
$1 = $25[fraction] ; extract the fractiomal value, so $1 = 0.76
$1 = $25[trunc] ; extract the truncated value, so $1 = 123

; extract the rounded value, so $1 = 124
; extract the truncated value, and add 0.11,
; so $§1 =123.11

$1 = $25[round]
$1 = $25[trunc] + .11

When rounding, UNIFACE always:

Suick Reference Guide (101075201, 21 September 1992)

page 3- 15

UNIFACE V5.2

UNIFACE V5.2

1}

¢ Rounds up or down from the fraction 0.5 (with 0.5 being rounded up ‘
to 1).

e Uses the absolute value of source as the basis for rounding. This
ensures that source [trunc] + source [fraction] is always equal
to source. For example:

1

(vhere $25 = -123.76)
$25 = $25(round) ;round value in $25: §25 = -124

‘ Chapter 4 Debugging Procs

3.4.3 Converting to a number

UNIFACE provides the $number function to convert strings into
numbers. The format for $number is:

{field = | register =} $number ("string")

The $number function does not convert numeric information if it is
preceded by alphabetic or punctuation characters. However, the starting
position of numeric text can be found by using the scan statement. For
example, the following sets Sresult to the position of the first numeric
character in $1:

4.1 Command line

While in debug mode, the bottom line of the screen displays information
about Proc statements. This is shown in figure 4-1:

Debug camand line
{EXEC} Y1:1 edit SEQUENCE NUMBER.CUSTOMER.SALES >

|

Debug command
line prompt: enter
your commands

scan $1, '#’

Example

The following example shows how a combination of scan, $number and
string extraction can be used to extract the numeric part of a string.

$1 = "Amsterdaml23jim" Current trigger here
scan $1,'#’ ; find start of mmeric data or central Proc
if ($result > 0) ; string ($1) contains mmeric data module
$3 = S$result ; save $result (start position of mmeric data) Proc statement about
else Intemally generated o be executed. If
message "$3$1 does not contain mmeric data” module number and ; iy
: value is substituted,
retum -1 line number of value is ‘@’
it statement in Proc

$2 = Smmber ($1[$3])

putmess "mueric part of %1 is 52" figure 41 The debug command line.

While in debug mode, the designer can control the operation of the
application very precisely. Debug commands allow the designer to set
break points, step through Procs one statement at a time, display the
contents of $registers, fields, status request functions, etc.

nmmnmmmmmmm

page 3- 16 (101075201, 21 September 1992) Extracting values from the data Quick Reference Guide (101075201, 21 September 1992) page4-1

UNIFACE V5.2

The commands available in debug mode are described in section 4.2
Commands. Each command is explained in greater detail in the following

UNIFACE V5.2

sections. The commands are summarized in table 4-1:

break {module} {ine}] b {module} {line}
b

examine {number} ex {number}

ex number = {val} num = {val}

g
oot {number} io {number}

ime {numpen} | {number}

i
9
o
8

Set a break point at module on line.

Cancel break point.

Set break points on call statements.

Cancel break points on call statements.

Allow messages to build up in the message frame.

Clear the message frame normally.

Return from 4GL Proc module without executing any further statements.
Dump statements of the current Proc module, either to screen (putmess
off), or message frame (putmess on).

Dump the Proc statements in the named central Proc library.

Display contents of next register.

Display contents of register $number.

Display contents of field {fname}{.ename}.

Set register $number to numeric val, or if number is in double quotation
marks ("), a string value. ex is optional (51 = 3 is also possible).
Display one of the status request functions, for example, sentname,
Sfieldmod.

Continue execution until next break condition or debug command.
Send I/O messages to message frame, even if application definition has
defined that none should be displayed. number = numeric code which
determines the I/O messages to send to the message frame, for
example, io 63.

Execute number Proc statements, but do not step through a called
module.

Skip the current statement without executing it.

Redirect message frame input to the screen.

Direct message frame input to the message frame.

Exit the application immediately.

Set break points on return and done statements.

Cancel break points on return and done statements.

Display break point settings.

Execute one (the next) Proc statement.

Execute number Proc statements and step into called subroutines.
Only to be used by Uniface authorized personnel. Use xtrace instead.
Only to be used by Uniface authorized personnel. Use xt race instead.

Send ge to message frame about which triggers are activated and
when number=0or 1.
Start the extended trace facility of the UNIFACE debugger.

e &7 Detug commancs.

ninnnnnm

poge 4-2 (101075201. 21 September 1992) Debugging Procs Quick Reference Guide (101075201,

21 September 1992) page4-3

UNIFACE V5.2

4.2.1 break {module} {line}, b {module} {line}

4.2.2 break, b

4.2.3 callon

4.2.4 call off

4.2.5 cirmess off

4.2.6 clrmess on

Set a break point at line in module.

Clear break points.

These commands are used to define and clear break points within a
specific module. The debug command line appears when the statement
defined here is about to be executed. For example, the following
command sets a break point at the second line in the central Proc module
censtore:

{EXEC} Y1:1 edit coname > b censtore 2

The module named can be either a central Proc module, a locally defined
entry, or one of the internally generated module names.

Set break points on call statements.

Cancel break points on call statements.

These commands set and cancel break points at each call statement.
The debug command line appears before any Proc module is started.

Allow messages to build up in the message frame.

Clear the message frame normally.

poge4-4

(101075201, 21 September 1992) Debugging Procs

1RDRRRRRRRRRRRRARRRY

428 dump

429 dump module

UNIFACE V5.2

These commands control whether I/O and other messages sent to the
message frame will be cleared. Sometimes it is useful to allow these
messages to accumulate to see a complete picture of how an external
schema is operating.

Return from the Proc module without executing any further statements.

Dump the statements of the current Proc module either to the screen
(putmess off) or to the message frame (putmess on).

Dump the Proc statements in the named central Proc library.

Use these commands to see a complete Proc module, in addition to the
single statement shown on the debug command line. The statements are
sent to the message frame or the screen, depending on the putmess
status.

4210 examine {number}, ex {number}

4211 examine, ex

Display the contents of register $number.

Display the contents of the next register.

Suick Reference Guide (101075201. 21 September 1992) page4-5

'UNIFACE V5.2

4.2.12 ex {field_name}{.entity_name}

4.2.13 ex number = {value}

4.2.14 ex {$function(name)}

4215 go, g

4.2.16 ioprint {number},io {numben

Display the contents of a field.

Set register $number to numeric value, or, if number is in double
quotation marks ("), a string value. ex is optional. Scity$ =
"Amsterdam"” is also possible, therefore.

1M

Display one of the status request functions, for example Sentname,
$fieldmod.

UNIFACE V5.2

1 § Store sequence messages.

2 One-line I/O messages.

4 Return values from fetch and select statements.

8 Open description block.

16 where and order by description.

32 Generated SQL (if available).

64 System messages such as the command spawned by a
spawn statement or an operating system error message.

128 Calls to UOBJECT and data I/O messages.

For example, to only allow store sequence messages and open description
blocks, use a value of 9 (the sum of 1 + 8).

See the Reference Guide for more information.

Use these commands to examine $registers, fields and status request a 4217 line {number, | {number}

functions. In addition, $registers can be set to a specific value. General
registers ($1 to $99) can be referred to without the dollar sign, for
example ex 79.The $status and $result registers are referred to as
100 and 101 respectively.

Continue execution until a break condition or another debug command
is encountered.

This command takes the application out of debug mode until a break
point is encountered, or another debug command is executed.

number = numeric code which determines I/O messages.

Send I/O messages to the message frame, even if the application
definition has defined that none should be displayed. The following
values show the different classes of messages available. The values may
be summed to allow several different cl of to be displayed

0 No information.

page4-6

NN

(101075201, 21 September 1992) Debugging Procs

Execute number Proc statements, but do not step through a called
module.

These commands are used to execute a specific number of Proc
statements. The difference between these two commands is that 1ine
considers a call statement as a complete unit; the statements in the
called module are not executed individually.

4218 nop
Skip the current statement without executing it.
4219 putmess off
Redirect the message frame input to the screen.
4220 putmess on
Direct the message frame input back to the message frame.
Quick Reference Guide (101075201, 21 September 1992) page4-7

UNIFACE V5.2

UNIFACE V5.2 ”
The putmess off command causes messages which are normally sent on, ir on
to the message frame to appear immediately on the terminal screen. Use Send driver and 3GL performance information to the message frame
AREFRESH to repaint the screen and get rid of these messages. The (outmess on) or to the screen (putmess off).
putmess status a.}so determines whether the inforn_mtion requested with When the is on, the begin time, end time and elapsed time of each
trace and dump is sent to the message frame or directly to the screen. b i1l 3GL routine e aoertorastetement are
sent to the message frame. This feature allows the designer to monitor
precisely how long each routine takes to complete.
4.2.21 quit

Exit the application immediately. Using quit to leave the debugger
when you are prototyping a form terminates the current IDF session.

4226 frace off, ir off
Only to be used by Uniface authorized personnel. Use xtrace instead.

4.2.22 return on
4227 frace 1,1r1

Set break points on return and done statements.

Only to be used by Uniface authorized personnel. Use xt race instead.

4.2.23 return off
4228 frace 0,110

Cancel break points on return and done statements.

These commands set and cancel break points at each return and cone
statement. The debug command appears just before any Proc subroutine
is about to end.

Only to be used by Uniface authorized personnel. Use xtrace instead.

nmnmm

4.2.24 show, sh Execute one Proc statement.

Display break point settings.

This command displays the current break point settings. For example, if
there is a break point on call, return and line 2 of the censtore module,
this command shows the following:

4230 siep {numberi, s {number}

Execute number Proc statements.
{EXEC) CENSTCRE:2 return on call on> show

Quick Reference Guide (101075201, 21 September 1992) page 4-9

MMM

page4-8 (101075201, 21 September 1992) Debugging Procs

UNIFACE V5.2

UNIFACE V5.2 ”

4.2.31 xtrace " Abbreviation Full trigger name Level
Start the extended trace facility. This statement puts the debugger nto RETS RETRIEVE SEQUENTIAL Forrn
extended trace mode. All Proc statements are copied to the message STOR :STORE> Q > Form
frame as they are executed. The information written to the message UKYS <USER KEY> Form
frame includes which trigger the Proc statement is in, which module in ” A0 <ADD/INS.OCCURRENCE> Entity
the trigger the statement is in, and any arguments given to the Proc DELE DELETE : Entity
statement. This statement is new to version 5.2. DTLE <DETAIL> Entity

" DLUP DELETE UP Entity
ERRE ON ERROR Entity
s : HLPE <HELP> Entity

4.2.32 Examining contents of $registers ” LMK LEAVE MODIFIED KEY Entity
Type in the $register (general, local or central) at the debug command tg(o:K ll:(E)}(\:\ll(E MODIFIED OCCURRENCE E:::ty
line prompt. For example, if you type in $1, the debugger shows you what LPO LEAVE PRINTED OCCURRENCE Entiz
¥ Sontaion " MNUE <MENU> Entity

OBA OCCURRENCE BECOMES ACTIVE Entity
READ READ Entity
RMO <REMOVE OCCURRENCE> Entity
4 Tri 2 WRIT WRITE Entity
-3 Trigger mnemonics ” WRUP WRITEUP Entity
See table 4-2 for all triggers in the IDF, together with their gEEFR Dsg‘;’l ET "::::g
abbreviations. The debugger and Proc listings use these abbreviations. " ENCR EN c HYP:’ Field
ERRF ON ERROR Field
Abbreviation Full trigger name Level ” HLPF <HELP> Field
o LFLD LEAVE FIELD Field
APPL APPLICATION EXEC Application MNUF <MENU> Field
RSN ASYNCINTERRUPT ApphcEa ” NFLD <NEXT FIELD> Field
MNUA <MENU> AP PFLD <PREVIOUS FIELD> Field
PULA <PULLDOWH: Applcation SMoD START MODIFICATION Field
swit <SWITCH KEYBOARD> Applcaiion OPTN TITLE / OPTION Pulldown menus
UKYA <USER KEY> Application
ACPT <ACCEPT> Form ” bl 42 Trigger mnemonics
CLR <CLEAR> Form
ERAS <ERASE> Form
EXEC EXECUTE Form ”
MNUS <MENU> Form
PRNT <PRINT> Form
PULS <PULLDOWN> Form
QuUIT <QUIT> Form
RETR <RETRIEVE> Form "
table 4-2 continues "
' Quick Reference Guide (101075201, 21 September 1992) page 4-11

page 4-10 (101075201, 21 September 1992) Debugging Procs

UNIFACE V5.2 UNIFACE V5.2

Naming conventions, reserved
words and wildcards

The naming conventions are UNIFACE naming conventions. The
reserved words are UNIFACE reserved words. The wildcards are
UNIFACE wildcards. Your DBMS and operating system also have
naming conventions, reserved words and wildcards. Make sure that you
know those also.

5.1 Naming conventions

5.1.1 External schema, conceptual schema, application, field

Length up to 32 characters, except for external schemas (up to 16).
A-Z, a-z, 0-9 and underscore (_) allowed.

First character must be a letter.

UNIFACE reserved words are not allowed.

I

page 4- 12 (101075201, 21 September 1992) Debugging Procs Quick Reference Guide (101075201, 21 September 1992) page 5-1

UNIFACE V5.2

5.1.2 Frames on paint tableau

Frame

Rule

Area

Break

Entity

Field in break
Field in entity
Field in header
Field in trailer
Header
Named area
Trailer

No name allowed
BREAK_FRAME_NAME
ENTITY.CONCEPTUAL_SCHEMA
FIELD.BREAK_FRAME_NAME
FIELD.{(ENTITY}

FIELD.HEADER

FIELD.TRAILER

No name allowed

Same name as enclosed entity

No name allowed

table 5-1

5.1.3 Global models

5.2 Reserved words

Naming conventions for frames.

Length up to 16 characters.

A-Z, a-z, 0-9 and underscore (_) allowed.
Must begin with the ‘at’ (@) symbol.

First character after the ‘@ must be a letter.

Do not use the following as names for any objects:

* Proc instructions (see Proc L
e Proc special functions (see Proc Language Reference Manual).

Reference M D).

o IDF application dictionary names (see subsection 5.2.1 IDF
application dictionary names).

Do not use the following as entity names:

e HEADER.
e PRATT.
* TRAILER.

page 5-2 (101075201, 21 September 1992) Naming conventions, reserved words and wildcaras

MITNNNNNMMNM

UNIFACE V5.2

¢ UNISCODELIL
¢ UNIS.

Avoid names which differ only in the first letter, an ‘O’. UNIFACE
creates overflow tables when needed by adding the letter ‘O’ to the front
of the entity name.

Do not use the following as conceptual schema names:

FRM.
APS.
DICT.
TEXT.

5.2.1 IDF application dictionary names

These are all reserved words and should never be used as the names of
any objects defined in your UNIFACE applications:

APPL OULGROUP UFIELD ULREGIS
FORM OUMISC UFINT UMISC
FORMAPPL OUOBJECT UFLAY UOBJECT
OAPPL OUTABLE UFSYN UREGIS
OFORM OUVIEW UGINT URELA
OUDOM PRATT UGROUP USYSANA
OUFIELD UANA UKEY UTABLE
OUGROUP UCROSS ULFIELD UVIEW
OULFIELD UDOM ULGROUP

Avoiding reserved word conflicts

The following ways also avoid the name problem, if you want to use any
of the reserved words listed here:

¢ The application dictionary and the run time application can be kept
in separate accounts.
¢ Different DBMSs can be used for the IDF and the end application.

5.2.2 UNIFACE Reporter application dictionary names

These are all reserved words and should never be used as the names of
any objects defined in your UNIFACE applications:

Quick Reference Guide (101075201, 21 September 1992) page5-3

UNIFACE V5.2 UNIFACE V5.2

E_CMFLD E_VIEW

E_FRAME E_VWENT

E_MEMBER E_VWFLD

E_REPFLD E_VWSEL

E_REPORT E_VWUGRP

E_REPSEL E_VWUSR

E_SRTFLD

E_USER T

E_USRGRP Chapter 6 Interface definition

5.3 Wildcards 6.1 Data types (UNIFACE)

Code Meaning UNIFACE data type Explanation

: e String (ISO Latin-1 character set)
. 0 - n characters (any character, printable or not) Special string (full UNIFACE character set)
< Less than R Raw data

<= Less than or equal to N Numeric

= Not null F Floating decimal point

= Is null D Date

>= Greater than or equal to T Time

> Greater than E Combined date and time
x Ang B Boolean (true or false)

: A | Image (for X-bitmaps only)
”

Any single character LD Linear date
LE Linear date and time (combined)

LT Linear time

table 5-2 Wildcard codes supported by UNIFACE.

You may use only one ‘&’ operator or one ‘|’ operator field. Retrieve table 6-1 UNIFACE data types.
pe! per

profiles in different fields are automatically connected by an ‘&’ operator.
The total retrieve profile possible can contain up to 4000 characters (not

Strings and special strings
all DBMSs support this many characters).

Strings allow only UNIFACE fonts 0 and 1 to be used; special strings
allow all other UNIFACE fonts as well.

Image data type
The Image data type is for use with bitmaps only, for use in pushbuttons.
See the Developers’ Guide for GUI Applications.

R RRRRRRRRRRRRRRRRRRY

page 5-4 (101075201, 21 September 1992) Naming conventions, reserved words and wildoards Quick Reference Guide (101075201, 21 September 1992) page 6 -1

UNIFACE V5.2

UNIFACE V5.2 ﬂ
6.2 UNIFACE packing codes n Packing code Explanation
Packing codes are specified in the C ptual Field intertmems sl n D9 Binary date DMY
form, or the Field Assignments form. D10 Binary date YYMMDD
D11 Binary date DDMMYY
Packing code Explanation " E Optimum DBMS combined date/time default
El SYBASE linear four-byte date and four-byte time
c1-c* Character (number if type ‘N’, in which case only C1-C32 n E2 RMS linear date and time
are allowed; this causes numbers to be stored as sign E3 ASCII date DDMMYYYY time HH:NN:SS
left, right aligned, decimal point included) E4 ASCII date DDMMYYYY time HHNNSS
VC1-VC* Variable length character string n E5 Ingres date DD-MMM-YYYY time HH:NN:SS
SC1-SC* Segmented character string E6 ORACLE internal date/time format
U1-U* TRX character " E7 SYBASE ASCII date MM/DD/YYYY HH:NN:SS.TT
VU1-VU* TRX length variable character string E8 ASCI| datetime YYYYMMDDHHMMSS (like D2+T2)
SU1-SU* TRX segmented character string T Optimum DBMS time default.
R1-R* Binary (raw) " T1 ASCII time HH:NN:SS
SR1-SR* Segmented binary (raw) T2 ASCII time HHMMSS
VR1-VR* Variable length binary (raw) T3 ASCIl date DDMMYYYY time HHMMSS
" One-byte integer ” B Optimum DBMS Boolean default
12 Two-byte integer B1 ASCII Boolean 0/1
13 Three-byte integer " B2 ASCII Boolean F/T
14 Four-byte integer B3 ASCII Boolean N/Y
18 Eight-byte integer B4 Binary Boolean 0/1
M1 Money: eight-byte integer, scaling 2 ”
M2 Money: double precision D-float table 6-2 Packing codes allowed in UNIFACE.
M4 SYBASE money format, scaling 4 "
N1-N32 Number, stored without decimal point
P1-P8 Packed decimal, +/- at beginning of field
Q1-Qs Packed decimal, +/- at end of field ”
F Optimum DBMS floating point default
F4 Single precision F-float n
F8 Double precision D-float
D Optimum DBMS date default
D1 ASCII date DD-MMM-YYYY a
D2 ASCII date YYYYMMDD
D3 ASCII date DDMMYYYY n
D4 ASCII date YYMMDD
D5 ASCII date DDMMYY
D6 Binary date YYMD ”
D7 Binary date DMYY
D8 Binary date YMD ”
table 6-2 continues
poge 6-2 (101075201, 21 September 1992) Interface definition l Quick Reference Guide (101075201, 21 September 1992) page 6 -3

UNIFACE V5.2

6.3 Allowed combinations

UNIFACE | UNIFACE data types |Description
packing [Ss| LD[LE/LT
codes S|R|N/F|D|E|T|B
Cc1-C* e|e|e e oo el Character (number if type ‘N’)
VC1-* . Variable character
SC1-* . Segmented character
u1-* o|e TRX character
vu1-* oo TRX variable character
Su1-* ol TRX segmented character
R1-* . Binary (raw)
VR1-* . Variable binary (raw)
SR1-* . Segmented binary (raw)
11-14 . One-byte to four-byte integers
M1-M4 . Various money formats
P1-8 *: Packed decimal, +/- at beginning
Q1-8 . Packed decimal, +/- at end
F e Float (optimum DBMS format)
F4 ele Single precision F-float
F8 ol Double precision D-float
D . Date (optimum DBMS format)
D1-11 . Various date formats

'E BRI Date/time (optimum DBMS format)
E1-8 oo Various date/time formats
IR . Time (optimum DBMS format)
T1-3 . Various time formats
Bi1-4 | Various Boolean (true/false)

Legend: SS = special string (full UNIFACE character set), S = string (ISO Latin-1 character
set), R = raw data, N = numeric, F = floating decimal point, LD = linear date, D =

date, LE = linear i E=

LT = linear tme, T

= time, B = Boolean (true or false), ® = possible combination.

figure 6-1

Possible data type and packing code combinations.

page 6-4

(101075201, 21 September 1992) Interface definition

MIMMNIMIMIMMIMNIINININ

UNIFACE V5.2

6.4 Variable length techniques

String identification method

The string identification method uses ASCII strings to mark the field, the
first subfield occurrence (if defined), and subsequent subfield occurrences
(if defined). Type the actual string, or, if non-printing ASCII, the decimal
value of the ASCII strings that you want to use as a string identifier in
the Field identifier entry. (For example,*28.)

Length identification
Length Explanation
identifier

I

Identifier string only (default if an identifier string already
defined).

One-byte binary length identifier.

Two-byte binary length identifier.

Three-byte binary length identifier.

Four-byte binary length identifier.

String identifier, then one-byte binary length identifier.
String identifier, then two-byte binary length identifier.
String identifier, then three-byte binary length identifier.
String identifier, then four-byte binary length identifier.
One-byte binary length identifier, then string identifier.
Two-byte binary length identifier, then string identifier.
Three-byte binary length identifier, then string identifier.
Four-byte binary length identifier, then string identifier.

table 6-3 Length identification for subfields.

Quick Reference Guide (101075201, 21 September 1992)

page 6 -5

UNIFACE V5.2 UNIFACE V5.2

Chapter 7 Syntax checks

7.1 Entry format

You can use syntax strings to check whether information entered into a
field is in the required syntax. You can specify the required syntax string,
or ‘pattern’ in the Entry format of the Field syntax model form. You
can use the same syntax codes for checking syntax in an if Proc
statement.

Syntax codes Explanation

One digit.

#* Zero-n digits.

& One letter.

& Zero-n letters.

@ One letter or one digit or underscore.

e 0-n letters, digits or underscores.

7, One ASCII character.

* 0-n ASCII characters.

= 0-n ASCII characters (same as 7*).

A-Z That uppercase letter, that is, A, or B, or C, etc.
a-z That letter, upper or lowercase, that is, Aor a, B or b, etc.

Any ASCll char That ASCII character, not a syntax string code.

%any ASCII char That literal ASCII character, that is, not a variable code.

(Any) Syntax strings in brackets are optional. Syntax is
checked only if data is present. If there are multiple
possibilities, enclose each possibility in brackets.
For example, (J)(N).

table 7-1 Syntax string codes.

MMM

page 6 -6 (101075201. 21 September 1992) Inferface definifion Quick Reference Guide (101075201, 21 September 1992) page7-1

UNIFACE V5.2

7.1.1 Entry format examples

R

Entry format All (for) Notall
#* 1000 1,000
[nothing] 0000.0
12 34 456
12314567 1loa
Kad o Any text with an asterisk Text without an asterisk as
(*) as the last character. the last character.
o 1000.00 1,000.00
0.50 0.5
.50 0.510
10.53 1000, 50
Mr. SMitH Mr. Jones
(HHE) B 404 396-3040 (404) 396-3040
396-3040 41 396-3040
396 3040

S(HHT) M-

(404) 396-3040

404 396-3040
396-3040
(404)396-3040

@ Smithl Smith?
Smith_Jones Mr. Smith
12345%2 12345%2
H& 1 23a 123-a
123-a
123-a
2 123,45 12345
0.30 3
a30 ,300
121/33 123.300
o # Anything else!
(J) @) (.) J Anything else!
N

table 7-2 Example entry formats.

(101075201, 21 September 1992) Syntax checiks

UNIFACE V5.2

Procs

In Procs, enclose syntax strings in single quotation marks, for example
‘?*’, 0r use $syntax (syntax_string).

Examples (for string fields)

if (fieldl 1= 122+7)
if (fieldl = r2+g%r)

itest for empty field

itest for asterisk in last character
jtest for asterisk anywhere in string
itest for field which starts with letter

if (fieldl 1angha%y)
if (fielal ‘&@* ")

Example $syntax

string = "Amsterdam"

€1 = pwcacis

if (string = $syntax($1))
message "String checks out!"

endif

7.2 Display/Edit/Prompt

Code Description

Display and edit (this is the default value).
Display only.

Edit only (for non-echoing passwords).
Display and edit, no prompt.

Display only, no prompt.

Edit only, no prompt.

No display, no edit and no prompt.

oA WLWN-=O

table 7-3 Display/Edit/Prompt codes.

Quick Reference Guide (101075201, 21 September 1992) page7-3

RERRRRRRRRRRRRRERDEI

UNIFACE V5.2 UNIFACE V5.2

7.3 Characters allowed in a field Code Description

NUM Numbers only.

Characters hdde At NUND Underlining not allowed.

G ovs Overstrike.

D ni -9

N::g;z:rs);nly 8_9 T PRO(characters) Profile allowed.

ASCII only UNiF'ACE font 0 RCS Replace contiguous spaces with one space.

1SO Latin-1 UNIFACE fonts 0 and 1 REP(n-m) Repetition of subfield: n = minimum, m = maximum.
UPC All uppercase.

o NIFACE fi h h7

Full char. set u CE fonts 0 throug YBLD Bold ailowed.

table 7-4 _ Characters allowed in a field: what they are. YDCC Delete all control characters.
YDCX Delete all text control characters.
YITA Italics allowed.
YUND Underlining allowed.

7.4 Shorthand codes for Field syntax model ble 7 Snerthend cadosfor Field sy model

Code Description

ASC UNIFACE font 0 only.

BRM Check that brackets match.

DIG Digits only.

DLC Delete leading control characters.

DLS Delete leading spaces.

DLZ Delete leading zeros.

DTC Delete trailing control characters.
ENT(syntax code) Entry format (see section 7.1 Entry formaf).
FUL Full character set allowed.

JMP Auto jump.

LEN(n-m) Length of field or subfield: n = minimum, m = maximum.
Low All lowercase.

MAN Mandatory field (minimum length of one).
MOD(n) Use checkdigit modulo number n.

MUL UNIFACE fonts 0 and 1 only.

NBLD Bold not allowed.

NDCC Do not delete any control characters.
NDCX Do not delete text control characters.
NDI Do not display this field.

NED No edit allowed in this field.

NITA Italics not allowed.

NPR Do not prompt this field.

table 7-5 continues

RRRRRRRRRRRRRRRRRREY!

poge7-4 (101075201, 21 September 1992) Synfax checks Quick Reference Guide (101075201, 21 September 1992) page7-5

UNIFACE V5.2 UNIFACE V5.2

Chapter 8 Display format

This section explains the codes used to define the Display format entry
of the Field layout model form. Display format is used to specify how
data should be echoed on the form.

8.1 String
Display format What is displayed
? Character from data element.
%? One question mark.
%% One percent symbol.

Any ASCllchar That ASCII character as a constant.

table 8-1 String display format codes.

Examples

Display format Input Displayed

Mr. 22222 Smith Mr. Smith
Jumpin’ Jack Flash Mr. Jupi

Mr. 222782 Smith Mr. ‘
Jumpin’ Jack Flash Mr. Jumpi?

M. 22722%% Smith Mr. Smith%
Jumpin’ Jack Flash Mr. Jumit

table 8-2 Example display format codes for string fields.

MMM

page7-6 (101075201, 21 September 1992) Syntax checks Quick Reference Guide (101075201, 21 September 1992) page 8- 1

UNIFACE V5.2 UNIFACE V5.2

8.2 Numeric (and float)

Examples
Display What is displayed Display format Input Displayed
format
99999 12345 12345
9 Digit, or leading/trailing zero. 123 00123
z Digit, suppress zeros if leading or trailing (after decimal). 00123 00123
B Spaces for suppressed zeros, ‘+' and ‘-’ signs. 13355 ey :t°° :““h d“:"anww
+ + to left or right if value is positive (>0). ;23_25 ﬁi * (r:":j;‘fl’f";’md'

- to left or right if value is negative (<0).
Fixed decimal point.

Fixed decimal comma.

Layout decimal point.

Layout decimal comma.

22222 12345 12345
123 123
00123 123
123456 error: "too much data”
-1234 error: "negatives not allowed"
123.45 12345 (no point defined)
Bzzzzz 123 123
01234 1234
-22222 123 123
-123 <123
-22222B 123 123

7T

table 8-3 Numeric display format codes.

22222~ 123 123
+22222 123 +123
+-2222Z 123 +123
-Bzzz99 =123 - 123

B-2zz99 -123 -123
1234 1234
999P99 123 123.0
123.45 123.4
12.3 012.3
1234.5 error: "too nuch data”
123.456 error: "too nuch data"
2229P9z222 123 123.0
.8970 0.897
012.12¢ 12.12
222.2z.222 12345678 123.45.678
12345 12.345
1.234 1.234
123.45.67 123.45.67

table 8-4 Example display format codes for numeric fields.

MMM

Quick Reference Guide (101075201, 21 September 1992) page 8-3

page 8 -2 (101075201, 21 September 1992) Display format

UNIFACE V5.2

one of the above codes.

table 8-5 Date display format codes.

UNIFACE V5.2 ”

8.3 Date ” Examples (non-linear)
Display EXf 1 ” Display format Displayed (1) Displayed (2)
format

Mr* d, yyyy March 16, 1990 June 2, 1990

d Day number in one or two digits. ” AA, MM d FRI, MAR 16 SAT, JWN 2
o Day rumber i two digts. i, o s
zd Day number in two digits or one space and one digit. ” a/miyy 1678750 576/90
aa Two-letter lowercase abbreviation from day name. 2d/zmiyy 16/ 3/90 2/ 6/90
AA As aa, by uppercase.
Aa As aa, but initial caps. a table 8-6 Example display format codes for date fields.
aa” Full day name in lowercase.
AA* As aa*, but uppercase. ”
Aa* As aa*, but initial caps. E tos di
m Month number in one or two digits. xamples (linear)
mm Month number in two digits. a
zm Month number in two digits or one space and one digit. Display format ~ Value Displayed
mmm Three-letter lowercase abbreviation for month. a
MMM As mmm, but uppercase. Z:MYYWW ;: zﬁ i:g ;:i‘iﬁ?g%
mmm* Full month name in lowercase. [oo ¢ .
R Flughasios ac iy ” Ldd.mm.yyyy 11 nonths and 25 days 25.11.0
Mmm* As mmm?, but initial caps. table 87 Example display format codes for linear date fields.
w Week number in one or two digits.
ww Week number in two digits. ”
w Week number in two digits or one space and one digit.
yyyy Calendar year in four digits. ”
yy Calendar year in two digits.
XX Fiscal year in four digits.
XX Fiscal year in two digits.
Ilcode Number of days, months or years as a linear value, using ”

page 8-4 (101075201, 21 September 1992) Display format Quick Reference Guide (101075201, 21 September 1992) page 8-5

UNIFACE V5.2

UNIFACE V5.2

8.5 Combined date and time
8.4 Time =
S Combined date and time fields use date and time display format codes.
Display Explanation
format = Example
h Hours in one or two digits. a Display format Displayed
hh Hours in two digits.
zh Hours in two digits or one space and one digit. G&d MM yyyy hh:m:ss 2 AR 1991 14:15:39
n Minutes in one or two digits. -
nn Minutes in two digits. table 8-11 Example display format for date and time.
zn Minutes in two digits or one space and one digit.
s Seconds in one or two digits. -
ss Seconds in two digits. ”
zs Seconds in two digits or one space and one digit. »
Ih Number of hours as linear value. 8.6 Shorthand codes for Field layout model
In Number of minutes as linear value.
Is Number of seconds as linear value. = —
t Ticks’ (1/100 seconds). “ Code Description
table 88 Time display format codes. ; BLI Blinking.
BOR Borderlines.
i BRI Bright.
. CTR Center alignment.
Examples (non-linear) DEC Decimal alignment.
— DIS(formaf) Display format (see section 8 Display format).
Display format Displayed (1) Displayed (2) ” INV Inverse video.
; g LFT Left alignment.
iﬂr:* e bl NAV No active field video.
bh:m.ss 16:15.2 09:05.0 NBR Not br_'gm'
hem.s 16:15.2 9:05.3 = NBL Not blinking.
zhizm.zs 16:15.2 9: 5.3 ” NIN Not inverse video.
_ NUN Not underline.
table 8-9 Example display format codes for time. RGT Right alignment.
SEP(c) Use a subfield separator c.
= UND Underline.
WID i i 2
Examples (insar) ” (n) Line width of n characters
: table 8-12 Shorthand codes for Field layout model.
Display format Value Displayed ”
Lzzd.zh.m.zs 27 days, 3 bours, 31 mimites 27.3.31.0 =
Lzzd.zh.zn.zs 71 mirutes, 29 secaonds 0.1.11.29
table 8-10 Example display format codes for linear time. a
‘ Quick Reference Guide (101075201, 21 September 1992) page 8 -7

(

page 8-6 (101075201, 21 September 1992) Display format

UNIFACE V5.2

page 8 -8

(101075201, 21 September 1992) Display format

UNIFACE V5.2

Chapter 9 Video and color

9.1 Video atiributes

These entries specify the video attributes of the frame you are currently
defining. The default for all of these options is defined at installation.

Attribute Explanation

Inverse i (only valid for fields).
Bright VERY BRIGHT (only valid for fields).
Blinking Blinking fields: impossible to re-create here!
Underlined UNDERLINED _(only valid for fields).

Color number See figure 9-1.

table 9-1 Video attributes in the Frame Definition form.

As with video attribute definitions anywhere in UNIFACE, you can
combine these attributes if you want. That is, you can use more than one
definition if required. Most of the definitions, as you can see in table 9-1,
only apply to fields.

If you apply these definitions to field frames, these entries override the
installation defaults and any entries in the External schema
definition form (the latter provide the defaults for all the fields in the
whole external schema). The video attribute definitions in the field
layout model override the frame definition and those in the external
schema definition. The settings supplied by the field_video Proc
statement at run time can override all previous settings.

Quick Reference Guide (101075201, 21 September 1992) page 9-1

nmmmmnmmm

UNIFACE V5.2 UNIFACE V5.2

9.2 Color definition

The standard USYS colors are not available on all displays, and some =
local definitions (for example the ‘palette’ definitions of a VT'340G) can . =

iad

cause these definitions to appear differently. Remember that some
combinations provide very disturbing results, and can be almost illegible.

USYS color Foreground colors
code matrix |sysTem blue |green| cyan | red |purple|brown| white Chapter 1 0 Keyboard Iayouts
system 5 1 2 3 4 5 6 7
blue 8 10 1 12 13 14 15 This chapter shows how keys are mapped for the most popular keyboard
green translation tables supplied with UNIFACE. The environment variable
Back- oy on m?eded to load the correct translation or device table is shown together
iground with each keyboard chart.
colors | red
purple
brown
white
Legend:

figure 9-1 USYS color codes, allowed in the Video color entry of frame definition

mMmmnmimmm

page 9 -2 (101075201, 21 September 1992) Video and color Quick Reference Guide (101075201, 21 September 1992) page 10- 1

UNIFACE V5.2

UNIFACE V5.2

10.2 Data General FKB4700

10.1 Bull TWS 2103

ol B F4 in UNIFACE is the AREMOVE function
<« <GOLD>F4 in UNIFACE is the AINSERT function
S F4 outside UNIFACE

e F2 in UNIFACE is the APREVIOUS function

«— <SHIFT>F4 in UNIFACE is the AFIRST function
S~ F2 outside UNIFACE

UDISP = vt100, UKEYB = ncd

To see borderlines correctly in character mode, you should start an xterm
with the following command:

TERM = tws2103

xterm -d display -fn8x13 -fb8x13bold &

MNNNNNNNIIM

Quick Reference Guide (101075201, 21 September 1992) page 10-3

page 10-2 (101075201, 21 September 1992) Keyboard layouts

UNIFACE V5.2

UNIFACE V5.2

10.3 DEC VT100/200 10.4 Hewilett Packard HP-HIL

F17 outside UNIFACE
_—F17outside

<« F17in UNIFACE is the AACCEPT function
T <GOLD> F17 in UNIFACE is the AQUIT funcw

(5, F8 outside UNIFACE
il | < F8 in UNIFACE is the ADETAIL function

BT <GOLD> F8 in UNIFACE is the AMENU function

UDISP = vt100, UKEYB = HP_HIL
Depending on your system: 00; =
TERM = vt100

UKEYB = vt100

UDISP = vt100

Quick Reference Guide (101075201, 21 September 1992) page 10-5

nmmmnmmnmmmm

page 10-4 (101075201, 21 September 1992) Keyboard layouts

UNIFACE V5.2

10.5 IBM PC AT 83/84 key

Other:

Not in zoom: Field

NxtScr
BotFor

1
Overstrike/Insert
Detail

P F4 in UNIFACE is the AREMOVE function \
<«——— <GOLD>F4 in UNIFACE is the AINSERT function

S F4 outside UNIFACE

This keyboard is set automatically under MS-DOS.

page 10-6 (101075201, 21 September 1992) Keyboard layou's

"

1233003 800800300800) %!

UNIFACE V5.2

10.6 IBM AT 101/102 key enhanced

F4in UNIFACE is the AREMOVE function
«— <GOLD>F4 in UNIFACE is the AINSERT function
S F4 outside UNIFACE

UNIX: UKEYB & UDISP = IBMPCX

To force this layout on an MS-DOS machine, use the following command:
set ukeyb=ikmpee

To force enhanced keyboard calls, use the following command:

set enihkeybios=y

For HELP, use GOLD-H.

Caution: This keyboard translation table maps both UNIFACE
characters 7.8 and 7.s to IBM storage "205 (the double-width horizontal

line), because both characters have the same shape on the screen. This
means that 237 is also mapped in this way, which can be confusing if you

A

Quick Reference Guide (101075201, 21 September 1992) page 10-7

UNIFACE V5.2 UNIFACE V5.2

10.8 IBM 6150 RT PC console

want to recognize ~237 as a different character. If you want to use “237
separately, map it to ‘phi small’, which is UNIFACE character 4.u
(4.7117).

/F55~.—F12 outside UNIFACE
Store & «——— F12in UNIFACE is the ASTORE function

Erase
L \<GOLD> F12 in UNIFACE is the AERASE function

10.7 IBM RS6000 console

. . N "
- F4in UNIFACE is the AREMOVE function
«——— <GOLD>F4 in UNIFACE is the AINSERT function

“—— F4outside UNIFACE

=
=
UDISP & UKEYB = IBMRS6000 ”
=
=
=

UKEYB & UDISP = IBM

Quick Reference Guide (101075201, 21 tember 1 -
page 10-8 (101075201, 21 September 1992) Keyboard layouts ek stk = g

UNIFACE V5.2

UNIFACE V5.2

10.9 OS§/2

‘ AP -
e F4 in UNIFACE is the AREMOVE function
<« <GOLD>F4 in UNIFACE is the AINSERT function
S F4 outside UNIFACE

<« <GOLD>F4 in UNIFACE is the AINSERT functi UDISP & UKEYB = ibmpex

“——— F4 outside UNIFACE

g F4 in UNIFACE is the AREMOVE function j
ion

MINININNNMNMNMM

Quick Reference Guide (101075201, 21 Sepfember 1992 age 10-11
page 10- 10 (101075201, 21 September 1992) Keyboard layouts ticerC phember 1992) pag

UNIFACE V5.2

10.11 SCO-Xenix

UNIFACE V5.2

10.12 Siemens 97801

A F4in UNIFACE is the AREMOVE function

< <GOLD>F4in UNIFACE is the AINSERT function l Al
“——— F4outside UNIFACE L\ Es)

<ESC>F13 in UNIFACE is AFONT function
F13 in UNIFACE is AUNDERLINE function

F13 outside UNIFACE

UDISP & UKEYB = ibmpex

TERM = 97801 .

munumnmnmm

page 10-12 (101075201, 21 September 1992) Keyboard layouts

Quick Reference Guide (101075201, 21 September 1992)

page 10- 13

UNIFACE V5.2

10.13 Stratus v102

Underline

OCCWINDO QUICK ZOOM FRAME REMOVEFILE
Occurrence Zoom Message Insert Fie
Fa F5 =3

PROFILE
Find text

movements

—Quick
movements

—Home

—Bottom

e <ESC><F8> in UNIFACE shows the keyboard help
<«—— <SHIFT><F8> in UNIFACE is Help
< <F8>in UNIFACE is Menu
<F8> outside UNIFACE

(101075201, 21 September 1992) Keyboard layouts

mnmnmmnmm

page 10- 14

UNIFACE V5.2

10.14 Sun-3
Sw.Keyd)
Frame
F2
z ; ~ z
/ = <GOLD>F4 in UNIFACE is the AMENU function

<«——— F4in UNIFACE is the ADETAIL function
} = F4 outside UNIFACE

UDISP & UKEYB = sun
Using the VT100 tool on the Sun console gives a better screen.

Quick Reference Guide (101075201, 21 September 1992) page 10- 15

UNIFACE
UNIFACE V5.2 _

10.16 Funcfion key combinations (all keyboards)

10.15 Sun-4 SPARC station

Press

{
i
;

GOLD

Accept

Bold (toggle)
Command menu
Detail

Erase

Frame

clear

Help

Italic (toggle)
compose character
Keyboard help
pulidown
Message

retrieve sequential
Overstrike (toggle)
Print

Quit

Retrieve

Store

The ruler
Underline (toggle)
View (toggle)

SQL Workbench
character attributes
switch keyboard
Zoom

select

find

refresh

N<XXS<CH®OWIOUOZZIrX&E«"IOMMOO®>»

* -

<GOLD>F4 in UNIFACE is the AMENU function
I «——— F4in UNIFACE is the ADETAIL function
“—— F4 outside UNIFACE & quick Zoom
: reset select
s profile
reset gold

UDISP & UKEYB = sun

Using the VT100 tool on the Sun console gives a better screen. table 10-1 continues

mimmimmm

Quick Reference Guide (101075201, 21 September 1992) page 10- 17

page 10- 16 (101075201, 21 September 1992) Keyboard layouts

UNIFACE V5.2 UNIFACE V5.2

Then press For

Example

named insert (‘burp’) remove selected block

named remove (‘slurp’)

Remove

I

table 10-1 Function key combinations (all keyboards).

10.17 ‘Super’ key combinations

As with the above function keys, these combinations are possible on
almost any keyboard. All you need to do, therefore, is find the GOLD key
and the space bar. Note that some of the standard USYS keyboard
layouts do not support a GOLD key, however.

Press Then press To set mode Then press To apply mode to
A Add c Character
| Insert w Word
R Remove 18 Line
I first (Top) < selected block
B last (Bottom) D Data (text window)
N Next F Field
P Previous o Occurrence
E Entity window
S Screen
X file

table 10-2 ‘Super’ key combinatlions.

mimmmmmunm

i ! age 10- 19
page 10- 18 (101075201, 21 September 1992) Keyboard layouts Quick Reference Guide (101075201, 21 September 1992) pag

UNIFACE V5.2

page 10-20

(101075201, 21 September 1992) Keyboard layouts

Chapter 11

UNIFACE V5.2

IDF command switches

Note: Some operating systems have difficulties with an asterisk (*), so the
IDF compilers interpret the percent symbol (%) in the same way as an
asterisk. Note also that some operating systems attach their own

interpr ion to some wildcard codes. In this case you must use the
convention for your operating system to ensure that the complete profile is
passed to the IDF. For example, you might need to enclose the profile in
double quotation marks (").

mmmIImMmImMmMmImmn

Quick Reference Guide (101075201, 21 September 1992) page 11-1

UNIFACE V5.2

11.1 Switches

Switch or sub-switch

Purpose of switch

IDF compiler switches

idf
idf
idf
idf
idf
idf
idf
idf
idf

Jall® Compile everything.

/apl application Compile application(s).

/app application Compile application(s).

/bar Compile menu bar and pulidowns in vanason.
/cen variation Compile central objects in variation.

/con h Compile ptual sch

/cross {/all} Start IDF with xref on, or compile & xref all

/dev variation

Compile device tables in variation.

/£rm (s)

idf external schema

idf
idf
idf
idf
idf
idf
1df

/ins installation_object
/1ib library

/men varnation

/mes varnation

/ob7j vanation

/trn vanation

/tra vanation

IDF compiler sub-switches

/£il
/inf
/lis
/war

Other IDF switches

idf
idf
igf
idf
idf
idf
idf
idf
idf

/cpy DBMSs and files
/exp application export_file
/hlp

/hel

/imp export_file

/key file

/1in application

/1nk application

/pre application

Compile

Compile extemal schema(s).

Install and compile UOBJECT or demo.
Compile central Procs in library.

Compile menu bar and pulidowns in vaniasion.
Compile messages in variation.

Compile central objects in variation.

Compile translation tables in variation.
Compile translation tables in variation.

Name new translation table to compile.
Compile and return all compiler messages.
Compile with Proc listing.

Compile with warning and error messages.

Convert data files from DBMS to DBMS.
Export application to export_file, after /pre.
Show this list.

Show this list.

Import the export_file exported with /exp.
Create keyboard translation table file.

Link application imported with / imp.

Link application imported with /imp.
Prepare application for distribution.

table 11-1 continues

page 11-2

(101075201, 21 September 1992) IDF command switches

nmmmnmmmmmmmm

UNIFACE V5.2

Switch or sub-switch Purpose of switch

Prepare application for distribution.
Prototype external schema.

Start the UNIFACE run time manager.
Test external schema.

idf /who Show installation defaults.

Sub-switches for ‘other IDF switches’

/cut=n Export /exp file to n Kbytes segment files.
X /proor /tst in debug mode.

Initialize interval counter with /cpy.

Set ‘supersede’ on with /cpy.

table 11-1 IDF switches and sub-switches.

11.2 Sub-switches

Switch or sub-switch Purpose of switch

General UNIFACE switches

lasn=assignment file Run application with assignment file.

/oat Run application in batch mode.

/Nlog=login info Provide DBMS or network login info.

Ipri=n Send type n information to message frame.
Mi=TFO_file Play back application with TFO_file.

ftfo Record application session to TFO file.

table 11-2 UNIFACE switches or IDF sub-switches.

Quick Reference Guide (101075201, 21 September 1992) page 11-3

|
|
-

UNIFACE V5.2

UNIFACE V5.2

Chapter 12 Assignments

12.1 Priorities

1 Assignment file defined in
Application definition form

Oor:

Assignment file with same
name as application and the
extension .AsN in the current
| account

USYS.ASN in USYS account

i Lower priority

rasa e o owsae

figure 12-1 When assignment files are read, and their priority.

NINNNININNNIN

page 11-4 (101075201, 21 September 1992) IDF command switches Quick Reference Guide (101075201, 21 September 1992) page 12-1

UNIFACE V5.2

12.2 Syntax

Within any assignment table, the higher up in the file that the physical
position of an assignment is, the higher the priority.

With the exception of a small number of ‘single word’ assignments for
UNIFACE system settings, an assignment always has two parts. The
first part defines the string expected by UNIFACE. The second part gives
the assignment for that string. Each part can be separated by spaces,
tabs or an equal sign (=), as shown in the examples below:

partl part2

partl = part2

Examples

$language = USA

$variation development
entityl.conc_schemal $SYB:entityl.*

file name /home/central park/textfiles/another file

Comment lines

Comment lines are denoted by a semicolon (;) in the first position.
Comments must be defined on separate lines. They can be inserted
anywhere in an assignment file and are generally used to enhance the
understanding of what is going on.

For example:

; these are cament lines which can contain information to
; enhance understanding

UPPERCASE or lowercase?

Path names and DBMS/network driver mnemonics are not
case-sensitive. UNIFACE system settings and parameters are also not
case-sensitive, and are shown here in lowercase. File and login
specifications depend on the operating system or DBMS, or both, in use.
(UNIX, for example, is case-sensitive.)

Context-specific syntax

This subsection has only introduced a generic format for all assignments.
Make sure to read carefully the exact requirements of the following types
of assignment:

page 12-2

(101075201, 21 September 1992) Assignmenis

nmminmmnmmmm

UNIFACE V5.2

= Entity assignments.
* Path definitions (path to path, and path to DBMS or network driver).
* Wildcards in assignments.

These are explained below.

12.3 Enfity assignments

The general syntax of an entity assignment is:
entity.conceptual_schema = Spath:table{.* | .extension}
Where:

* entityis the entity name used by UNIFACE.

. h is the ptual schema containing that entity.

. Spath is either the path whlch you have defined for the DBMS or
network driver (in an assignment), or the installation default path.

® table is the name of the table or file in the DBMS itself.

® .*| .extension is either the extension given to table or file names by
the DBMS in use, or an asterisk (*).

Asterisk extension

An asterisk in the extension position signifies the default extension
assumed by the DBMS driver; for example . rms for RMS, nothing for
ORACLE and SYBASE (tables in these last two DBMSs do not have an
extension).

For example:

family.dictionary = $MYRDB_PATH:family.*

accounts.savings = $SYB:accounts.*

campany. log = SINT:company. *

The remaining assessment of wildcard profile characters is the same as
for any other UNIFACE files (text files, . £rm files, application screens,
and so on).

Quick Reference Guide (101075201, 21 September 1992) page 12-3

UNIFACE V5.2

12.4 Path assignments

12.4.1 Path to DBMS or network driver

12.4.2 Path to path

Each path to a DBMS that you specify results in a channel to the DBMS,
that is, a different login. UNIFACE supports up to four different open
channels per DBMS. Not all DBMSs support more than one login.
‘When naming a DBMS or network driver, you use the three-letter
mnemonic for that driver, without the dollar sign ($) used for paths, and
followed by a colon (:).

The full syntax for this type of path definition is as follows:

$path = DBMS_driver: {{database} | {username} | {password}}

or:

spath = DBMS_driver: {{servername} | {username} | {password}}

or:

$path = network_driver: {network_node} | {username} | {password}

or:

Spath = network_driver: {network_server} | {username} | {password)}

If the driver mnemonic is not followed by login information, this indicates
the end of the specification and UNIFACE assumes that any further
information should be taken from the Logon form.

$SYB SYB:dict|berks|kemet
SRDB $SYB

SIDF SYB:?|?|?

SDEF SYB:?|?|?

$PROD ORA: |davis|belmont
$TEST SORA

SBETA $ORA

$path_1 - $path 2
For example:

$SYB = SRDB

$IDF = $MYRDB_PATH
$ORA = $MYRDB_PATH
SDEF = SVAX3

page 12-4

(101075201, 21 September 1992) Assignments

MINMMINMnMmn:

UNIFACE V5.2

: test assigned to production after Beta period

Reassigning default paths
For example:

SSYB - SINS_ KB

Reassigning DBMS
For example:
SINS_CTS = RMS:

12.5 Wildcard assignments

B

Two wildcard characters are permitted in certain cases. They are the
asterisk (*) and question mark (?).

Asterisks

An asterisk can be used as a wildcard in all parts of the assignment file.
For example:

¢ Entity assignments.

¢ Conceptual schema definition assignments.

* Assignment of files and table names in the file specification.
¢ Extension in the file specification.

Caution: The wildcard character *’ can be used to make assignments for
groups of files. The assignments in a table are evaluated sequentially,
from the top down. Therefore, place specific assignments above

i ts with a wildcard.

Question marks
Question marks (?) stand for either of the following:

® One character, when assigning file names.
* One login parameter in driver assignments.

Quick Reference Guide (101075201, 21 September 1992)

page 12-5

UNIFACE V5.2

It is not ry to provide lete information in path-to-driver
definitions. If a question mark (?) is substituted for either database,
username, or password, the DBMS Logon form appears and requests
this information when UNIFACE opens the DBMS.

When using one or more wildcards, your assignment is effectively:

profile = assignment

The profile for any file, entity or conceptual schema assignment is the fle

name as understood and used by UNIFACE. Any part of this name can

be substituted by wildcards.

All non-wildcard profile characters should match the corresponding part

or parts of the UNIFACE file name. These characters are not

case-dependent. That is, UPPERCASE and lowercase characters equate

to each other. An asterisk in any place other than the extension for entity]
assignments means ‘zero or more characters’in the corresponding part or

parts of the UNIFACE entity name.

For example:

Profile Matches which part of name ‘ABCDEFGH. ABC’
A* BCDEFGH. ABC
ABC* .ABC DEFGH

AB* A% First *: CDEFGH, second *: BC

table 12-1 Example profile matching in assignments.

When comparing a file name with the resulting profile, if UNIFACE finds
a match, an ‘assembly’ of the real profile and assignment is said to take

place. By ‘real’, we mean the profile and assignment with the wildcards .
replaced by non-wildcard characters. p
For example:

; UNIFACE file name is ABCDEFGH.ABC a
A% = X*

; UNIFACE file mepped to XBCDEFGH.ABC

ABC*.ARC = X*.Y

; UNIFACE file mepped to XDEFGH.Y

AB*.A* = X*.Y*

; UNIFACE file mapped to XCDEFGH.YBC

page 12-6

(101075201, 21 September 1992) Assignments

12.6 UNIFACE system seifings and options

UNIFACE V5.2

Values Explanation Default

BOR Sets active field indicator on N/A

True or faise True = keep in virtual memory True for
(MS/PC-DOS only) MS/PC-DOS
False = keep control blocks in False for all other
real memory systems

Up 1o 16 letters Default terminal table name N/A

(See ‘Explanation’) INVerse, BRIght, UNDerline, INV
BLInk or bit value

Up to 16 letters Display table name N/A

33 Permits use of 16-bit characters N/A
with, for example, Kaniji

GUI driver path Which Graphical User Interface Installation default
(GUI) to use. Can be tested in Proc

Up to 16 letters Keyboard table name N/A

Up to 3 letters Language USA

Number Maximum number of cursors 46
in ORACLE

Number Maximum number of files 0O/S-dependent
simultaneously open

Smaxpriz Number (Kbytes) Maximum size primary page 1500 pages

swap area

Number (Kbytes) Maximum size of input queue 512 bytes

(See Reference Guide) Where and how pulldown Top, INV, BRI
menu bar appears

None Disable asynchronous terminal Enabled
I/O under VMS

None Disable *busy * sign Enabled

None Linking disabled Disabled
(MS/PC-DOS only)

None Check mandatory fields Use post-V4 values
according to pre-V4 methods

True or false True = stick to pre-V5 date and False
time definitions.
False = use V5 date and
time definitions

Login information This is for the PolyServer only N/A

None Enable two-phase commit Disabled
(only works with DBMSs
which support this feature)

Up to 16 letters Variation usys

File specification

Name of secondary work file
(page swap file) (MS/PC-DOS)

t=ble 12-2 System settings in assignment files.

Quick Reference Guide (101075201, 21 September 1992)

page 12-7

UNIFACE V5.2 UNIFACE V5.2

An assignment causes UNIFACE to access the PolyServer on another

12.7 Extensions used for UNIFACE run time and other files node by creating a path to a network driver, instead of to a DBMS driver.

See figure 12-2:

File name Meaning
*.aps Compiled application screens. e s B
*.frm Compiled external schemas. / Assignment file \
t.pre Print files (VAX/VMS). —— S$VAX = DNT:VAX|?|? ‘
*.pn Print files (all other systems) (n = sequential number). \
*.exp Export files.
*ibrx TRX files.
any Any. Network [DBMS | [DBMS

: driver | driver || driver
table 12-3 UNIFACE files, non-DBMS. DNT {cis ||INF |
Example
.aps /home /central_park/applics/.aps
. pat /home /central_park/applics/*.prt

file name /hame /central_park/textfiles/another_file

In this way, whenever a reference is made to £ile_name, UNIFACE
substitutes another_file.

file load "file name",textfield

The following file is actually loaded into TEXTFIELD:
/home/central_park/textfiles/another_file

4 2

12.8 PolyServer assignments

Assignment files are flat ASCII files which let you set UNIFACE
variables, enable certain UNIFACE system settings and tell UNIFACE
where to find data. These files can be edited with any text processor, or
the Text file editor in the IDF. They are particularly important when
working with PolyServer, as they are how UNIFACE knows which
network driver to use and how to log on to remote machines.

figure 12-2 Assignment paths to network drivers.

networking. Details of the other possibilities and specific syntax used in
assignment files are described in the Reference Guide, chapter 12
Assignments. If you have not already done so, make sure that you read
this chapter of the Reference Guide.

o Note: This section describes how to use assignment files specifically with

munnmnnmmnmn

Quick Reference Guide (101075201, 21 tember 1992 -
page 12-8 (101075201, 21 September 1992) Assignments © G e o RS

UNIFACE V5.2

12.8.1 Providing login information with $remote_path

Name

Synopsis

Description

Examples

$remote_path is a UNIFACE and PolyServer system setting
assignment.

When logging on to a remote machine, UNIFACE passes the login
information for path, node, id and password. This comes from the client,
and is therefore a reaction to a request from the server; in other words,
the server becomes the ‘master’ until the information is provided. Note
that this is one of very few situations in which the PolyServer asks
UNIFACE for information.

You can supply this information with the $remote_path assignment.

$remote_path - specify login information for a DBMS or network login
on a remote machine, when using the PolyServer.

Sremote_path = driver:database | user|password

If a PolyServer process needs to log on to a DBMS or another machine
and does not already know the login information, it sends a request to the
client for this. The client first looks for an assignment beginning with
$remote_ and ending with the requested path name. If this is not
available, the client presents the DBMS Logon form for the user to fill
in.

The driver parameter is not used by either UNIFACE or PolyServer. It
must be included, however, to indicate where the database or node name
begins. This is the three-letter mnemonic for the driver, followed by a
colon (2).

You must provide complete login information with this
Using the question mark (?) to request the DBMS Logon form is not
supported with $remote.

$remote_london = syb:pubs|chertsey |park

page 12- 10

(101075201, 21 September 1992) Assignments

UNIFACE V5.2

The following assignment first creates a path named Svax2 which uses
the DNT network driver to access a remote machine. This assignment
includes user name and login information. The next two lines assign
entities in the DEMO conceptual schema, and the DICT conceptual
schema to this path The last line provides login information for the
ORACLE database on the server machine:

hickers|island
SSV.2ASY in the login directory on the server machine is as follows:

scott|tiger

The PSV.ASN assignment file on the server machine creates two paths,
one for the demo data and one for application dictionary data. The first
path includes login information. Because the second path includes
question marks, it requires information from the client in order to log on.

When PolyServer tries to access information via the path Sapdict, it
goes back to the client application for the login information. This
information is available with the $remote_apdict assignment.

Incorrect usage

The following example is incorrect, because this makes the PolyServer
try to log in using ‘?’ as the user’s password:

$vax2 = dnt:vax2 |myname |nypass

.demo = $vax2:¥.

= Svax2:
. apdict = ora: |bickers|?

12.8.2 Assigning entities to network drivers

Assigning entities to a network driver is done in exactly the same way an
entity is assigned to a DBMS driver when running stand-alone. The only
difference is that the assignment references a network driver instead of
a DBMS driver (the syntax is identical).

The assignment file used by the UNIFACE application on the client side
has to do two things: create a path which accesses the network driver and
assign one or more entities to this path. These are discussed below.

nmummnmmnmmm

Quick Reference Guide (101075201, 21 September 1992) page 12- 11

UNIFACE V5.2

Create a path which accesses the network driver

The path definition can optionally include node, user name and password
information. If a question mark (?) is included in place of this
information, PolyServer makes the Logon form appear to ask the user for
the required information.

Assign one or more entities to this path

After the path has been created, assign the entities located on the server
to this path.

Example

The following assignment file contains assignments for the data used in
the demo application delivered with UNIFACE. The first two
assignments create paths named $vax2 and $vax3. Both of these paths
are accessed with the DECnet network driver.

;DEMO.asn Assigment file

Svax3 dnt:vax3|?|?
Svax2 dnt:vax2|?|?
visits.rbase $vax3:visits.*
.rbase Svax2:.*

The assignments for these two paths include only the node name. The
question marks appearing in the position of the user name and password
mean that the user will be asked for this information when needed.

The next line assigns the VISITS entity from the conceptual schema
RBASE to the $vax3 path. The line after that assigns all other entities
in this conceptual schema to the $vax2 path.

When the user retrieves data, the Logon form appears, asking for user
name and login information needed to access the node vax2. After logging
onto vax2, the Logon form will appear again to ask for user name and
login for vax3.

This assignment file can be used on any client platform where the
DEChnet driver is available. The syntax does not change. The syntax is
also the same when using another network driver, for example Named
Pipes or TCP/IP. The only difference is that TCP or NMP is substituted
for DNT.

Password

Be aware that problems may be encountered if your password is longer
than the length recognized by the operating system. For example, many
UNIX systems only recognize the first eight characters and ignore the
rest.

page 12-12

(101075201, 21 September 1992) Assignments

nmmmmnnmmmm

UNIFACE V5.2

I your password is longer than the r d operating system length,
thus mechanism of entering your password does not automatically
trumcate to the operating system limit, because the mechanism has been
desigmed as an open system. A workaround is to enter only the first eight
characters, or whatever the limit of the system is.

1243 Herarchy of assignment files

The following assignment files are possible:
On fhe UNIFACE client machine

1. Either, as shown in figure 12-3:
The assignment file specified at application start-up with the /asn
switch.
Or:
The assignment file specified in the application definition.
Or:
application_name .ASN.
2. USYS.ASN - the global defaults for all UNIFACE applications.

r either:

! assignment file defined by
| /asn switch at start-up

or:

| Prmmmmepeti, | | assignment file defined in
‘ Application definition form
or:

[application_name. asn in the
L‘ ‘ current account

2

lower priority

USYS.ASN in USYS account ‘

figure 12-3 Hierarchy of reading and priorities: UNIFACE assignment files.

Quick Reference Guide (101075201, 21 September 1992)

page 12- 13

UNIFACE V5.2

4

On the PolyServer machine

1. Either, as shown in figure 12-4:
The assignment file defined for the PSV process with the /asn switch.
Or:
PSV.ASN - the specific file for the current PolyServer session.

2. PSYS.ASN - the global defaults for all PolyServer sessions.

1 either:
assignment file defined by
/asn switch in PSV definition
[2sv.asN in the login account
for your PolyServer session
2
PSYS.ASN in the psys account|

figure 12-4 Hierarchy of reading and priorities: PolyServer assignment files.

lower priority

We deliberately list the assignment files above in numbered steps,
because this is the order in which UNIFACE and PolyServer read and
prioritize the assignments these files contain. In the first step for
UNIFACE and PolyServer, the order of priority is also from top to
bottom.

Be aware that this system effectively gives you two assignment
‘environments’. If an assignment on the UNIFACE side assigns entities
to a network driver, then an assignment on the PolyServer can reassign
this assignment. As such, we can talk of the PolyServer assignments as
having a higher priority than the UNIFACE ones.

Generally, the assignment files on the client machine determine which
network driver and system login information should be used. The server
machine assignment files, on the other hand, contain DBMS assignments
and login information.

Separate hierarchies let you provide definitions at the appropriate place.
For example, you probably do not want end users to know DBMS
passwords on the server machine, as this might allow unauthorized
entry. Include these in an assignment on the server machine.

page 12- 14

nititimmnmm

(101075201, 21 September 1992) Assignments

UNIFACE V5.2

Reicfionships between assignment files

The diagram in figure 12-5 shows how the various assignment files work
together This configuration has two client machines, each with two
different users, using the same application and assignment files but

starting in separate directories.

Assignment for PolyServer on server machine

o
directfory 1

.
[rov.nss] |

R PSYS: PSYS. A

Login
directory 2

PSV.ASN

Assignment environment
for client one

Assignment environment
for client two

USYS:USYS.ASN

USYS:USYS.ASN

[APPL.ASN ' I APPL.ASﬂ

IAPPL.ASN I APPL.ASN l

e
%& Application

mmmmmmmwmmm%

directories

~ 7

Application ;
directories

W;&m&ummw ‘

figure 12-5

Combination of assignment files.

Both of these client machines access the server machine via their own
different login directories. There is one USYS directory on each client
machine, and one PSYS directory on the server machine.

12.8.4 Kinds of assignment files

As explained at the beginning of this section, assignment files on the)
client machine usually determine which network driver and system login

Quick Reference Guide (101075201, 21 September 1992)

page 12- 15

UNIFACE V5.2

information should be used; assignment files on the server machine
usually contain DBMS assignments and login information.

This subsection explains:

Application assignment file.
USYS:USYS.ASN on the client machine.
PSV.ASN in the login directory.

/asn switch on PolyServer side.
PSYS:PSYS.ASN.

Application assignment file

The application assignment file is valid for each application session.
Typically, it is located in the application directory and has the same
name as the application. This file can also be specified with the
/asn=file_name switch when starting the application, or in an
application level definition. This assignment file contains settings which
are intended for each individual application.

USYS:USYS.ASN on the client machine

The USYS . ASN assignment file in the USYS directory (also called the
UNIFACE installation directory) on the client machine is valid for all
applications running on the client machine. It generally includes
system-wide settings as opposed to individual application assignments,
which are specified in the application assignment file.

PSV.ASN in the login directory

The PSV. ASN file is analogous to the application assignment file, except
that it is located in the login directory on the server machine. This
assignment file determines the assignments for all clients which use that
login directory.

/asn switch on PolyServer side

Instead of PSV. ASN, you can use another assignment file by using the
/asn=file_name switch when starting the PolyServer. If you use the
/asn=file_name switch, you should include it in the definition of the
‘PSV’ process. How to do this differs per system.

For example, in a UNIX and TCP/IP environment, you define the PSV
process as PSV="$PSV TCP:" (after setting the environment variables
required to run PolyServer by running the inspoly script). Defining
PSV this way, without the /asn switch, causes the PolyServer to use the
DSV.ASN assignment file in the login directory, if it exists. Adjusting the

page 12- 16

(101075201, 21 September 1992) Assignments

UNIFACE V5.2

PSV definition to read PSV="SPSV /asn-file_name TCP:" causes the
PolyServer to use the assignment file file_name instead of PSV.ASN.

PSYS:PSYS.ASN on the server machine

This assignment file is analogous to the USYS. ASN on the client machine,
except that it is located in the PSYS directory on the server machine. It
provides definitions for all PolyServers running on that server machine.

1245 Priorifies and scope

The assignments for client and server remain strictly separated from
each other: the PolyServer’s assignments take effect only when data
reaches the server from the client. For example, an assignment on the
server machine might reassign a $path which has come from the client
to another $path, and no assignment on the client side can override this.

Within the client and server environments, however, strict rules of
priority are applied to the various assignment files available.

UNIFACE client

UNIFACE reads the assignments into an internal table from each file in
the order shown below:

1. Application assignment file.
2. USYS:USYS.ASN.

When UNIFACE looks for an item which could be assigned, it scans the
internal table from top to bottom until it finds a match. Therefore, the
assignments defined in the application assignment file have the highest
priority, and those in USYS:USYS.ASN have the lowest.

PolyServer

In the same way, PolyServer reads the server’s assignments into an
internal table from each file in the order shown below:

1. PSV.ASN, or file specified with /asn switch.
2. PSYS:PSYS.ASN.

‘When the PolyServer looks for an item which could be assigned (and
which has come from the UNIFACE client or another PolyServer), it
scans the internal table from top to bottom until it finds a match.
Therefore, the assignments defined in PSV.ASN have a higher priority,
and those in PSYS:PSYS.ASN have a lower priority.

——
e
i
)
B
e
—
—
)
e
—
)
—
=
=
=D
e

———

Quick Reference Guide (101075201, 21 September 1992)

page 12- 17

UNIFACE V5.2

e
B
e
P
)
e
=
=
—
—
 ad
el
=9
=2

: naae 12 - 18 (101075201, 21 September 1992) Assignments

Chapfier 13 Function codes

UNIFACE V5.2

Mnemonic Numeric code Explanation

A009 Tab

A010 Line feed

012 Form feed

013 Carriage return

034 Double quotation marks

")

ACCEPT AM277009
ADD_OCC A27M044
ATTRIBUTE M277078 Define character attributes
BOLD A27M47
BOTTOM AM277023 Cursor at window bottom
BOT_OF_FORM A277021 Cursor at form bottom
CHAR A2550001
CLEAR A27/7012
COMPOSE A127A088 Compose character
CURSOR_DOWN M277017
CURSOR_FAST_DOWN A127A026 Cursor eight lines down
CURSOR_FAST_LEFT AM27M027 Cursor eight spaces left
CURSOR_FAST_RIGHT A1277028 Cursor eight spaces right
CURSOR_FAST_UP A277025 Cursor eight lines up
CURSOR_LEFT M277018
CURSOR_RIGHT AM277019
CURSOR_UP M277016

table 13-1 continues

Quick Reference Guide (101075201, 21 September 1992)

page 13- 1

UNIFACE V5.2 UNIFACE V5.2
Mnemonic Numeric code Explanation Wremoruc Numeric code Explanation
DETAIL A127/094 OCC_WiNDOW 7255°015
ERASE A127A008 i #255°066 Previous mode
FIELD A255/010 PREV_CHAR A1277143
FIND_TEXT A127M50 ” PREV_SIELD 277047
FIRST A255M067 PREV_UNE A127737
FIRST_OCC AM27/037 “ PREV_OCC A1277040
FIRST_TEXT A127M29 PREV_TEXT A127A162
FONT A127A151 PREV_WORD AM277M141
FRAME AM27A089 Define frame ” PRINT A1277008
HELP A127A092 PRINT_ATTRIBUTES A1277M099
HOME AM270022 Cursor at window top ‘ PROFILE A127A087 Define find profile
INSERT A255M071 PULLDOWN A1277086
INSERT A2550074 Insert (removed) QUICK_ZOOM A127A096
INS_CHAR A127M184 ” Quir A127A010
INS_FIELD A127A181 REFRESH A1277067
INS_FILE A1277180 Insert file REMOVE A255M073
INS_LINE A1277M182 REM_CHAR A27M72 Delete character
INS_OCC A127/043 REM_FIELD AM27M66
INS_OVER AM27M46 Insert/Overstrike “ REM_FILE AM27M92 Remove file
INS_SELECT A127A195 Insert selected block REM_LINE A127M67
INS_TEXT M27M77 REM_OCC A127A045
INS_WORD A1277M183 REM_SELECT A27M194 Remove selected block
ITALIC A1277148 REM_WORD A1277M169
KEY_HELP A27/072 Keyboard layout help ‘ RESET_SELECT A27M96
LAST A255M068 RETRIEVE A1277005
LAST_OCC A127A038 RETRIEVE_SEQ A1277003
LAST_TEXT A127M28 “ RUB_CHAR AM27M73 Backspace (delete
LINE A255M004 character to left of cursor)
MENU AM27M01 ” RULER A127A081 Define ruler
MESSAGE A127A093 Message frame SAVE A127MT79 Put selected text in
NEXT A255A065 Next mode $selblk buffer
NEXT_CHAR AM27M42 ” SELECT A27M93
NEXT_FIELD A1277046 sQL A127A097
NEXT_LINE A127M36 ” STORE A127A011
NEXT_OCC A127A039 SWITCH_KEY A1277M00 Switch to alternate
NEXT_TEXT A1277M163 ” keyboard
NEXT_WORD A127M140)
OCCURRENCE A255M011 table 13-1 continues
table 13-1 continues ”
page 13- 2 (101075201, 21 September 1992) Function codes l Suick Reference Guide (101075201, 21 September 1992) page 13- 3

UNIFACE V5.2
Mnemonic Numeric code Explanation
TEXT A255/009
TEXT_WINDOW A255M014
TOP_OF_FORM AM277020 Cursor at form top
UNDERLINE A127M149
USER_KEY AM277091
VIEW A277073
WORD A255M003
ZOOM A277095
table 13-1 Character codes for use in macro statements.

page 13-4 (101075201, 21 September 1992) Function codes

AN

e b <o il R

Quick Reference Guide
Volume 11

101075201

21 September 1992

uniface

Advanced Software Technology

Uniface International

Hogehilweg 16, 1101 CD Amsterdam, The Netherlands
Telephone +31(0)20-6976644, FAX +31(0)20-6912912

279 79°"7°" 7" 7179 7°"7°"7T777°°"7°"7°"17°"17°"1°"%°" """

